

New Jersey Mitigation Assessment Team (MAT) Outbrief Superstorm Sandy

An Overview of the MAT in NJ and Next Steps

December 20, 2012

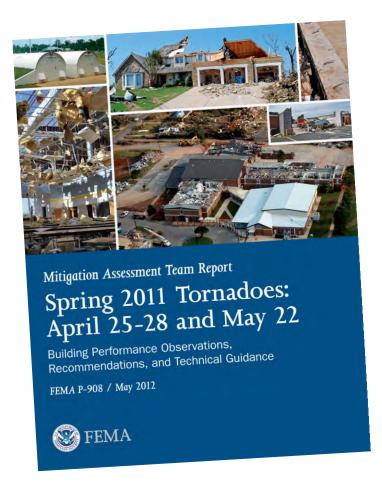
Presentation Outline

- 1. Mitigation Assessment Team (MAT) Program Background
- 2. Summary of MAT Field Work
- 3. Potential Recovery Advisory Topics and other MAT Support
- 4. MAT Report
- 5. Available Resources
- 6. Question and Answer

1. MAT Program Background

Mitigation Assessment Team (MAT)

- Investigates building performance under severe hazard events
- Determines causes of building damage, failure and success
- Evaluates performance of mitigation projects


MITIGATION ASSESSMENT TEAM

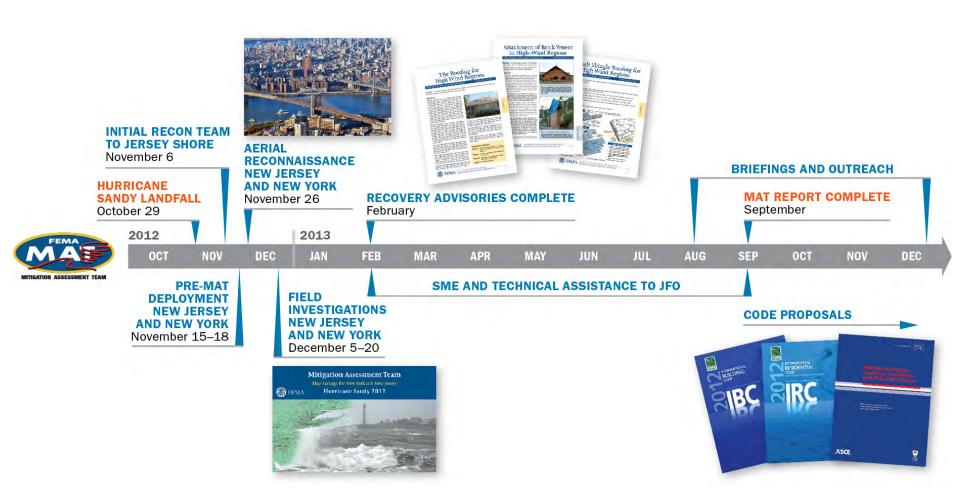
- Provides design and construction recommendations for reducing damage and protecting lives in hazard areas
- Draws on combined resources of Federal, State, local, and private sectors
- Supports building science/building code elements of NDRF

1. MAT Program Background

MAT Reports

- Include recovery advisories observations, conclusions, and recommendations
- Past reports include:
 - Hurricane Isaac (TBD)
 - Spring 2011 Tornadoes (FEMA P-908)
 - Hurricane Ike (FEMA P-757)
 - Midwest Floods of 2008 (FEMA P-765)
 - Hurricane Katrina (FEMA 549)
 - Hurricane Charley (FEMA 488)
 - Hurricane Ivan (FEMA 489)

1. MAT Program Background

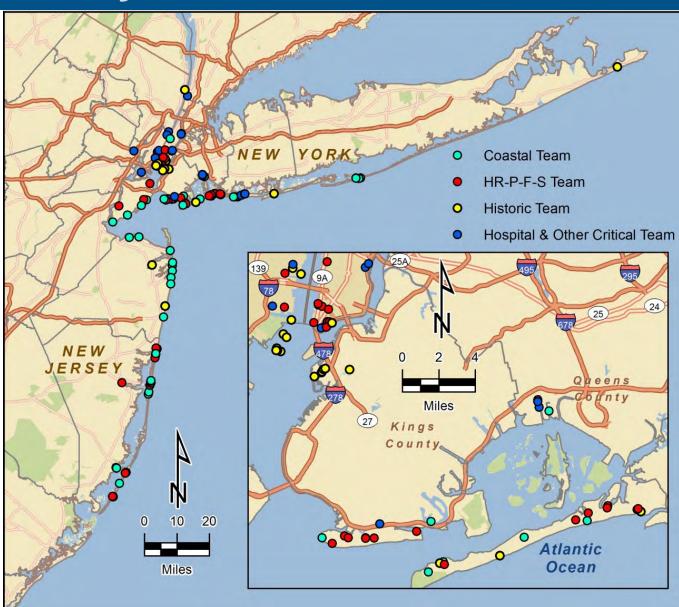

Implementing MAT Results

- FEMA Publications
 - P-320/P-361 (Residential and Community Safe Rooms)
 - P-543/P-577/P-424 (Critical Facilities/Hospitals/Schools)
 - P-55/P-499/P-550 (Coastal Construction)
- Codes and Standards
 - ICC/NSSA Storm Shelter Standard (ICC-500)
 - Florida Building Code Upgrades (Glazing, Asphalt Shingles, Tile Roofing, Panhandle exemption removed, comprehensive flood provisions)
 - ASCE 7 Minimum Design Loads for Buildings and Other Structures
 - ASCE 24-05 Flood Design Standard, adopted by ICC
 - State building code adoption efforts (Louisiana/Mississippi post-Katrina)
 - 2015 International Building Code: Safe Rooms required by code
- Inform/Influence HMA requirements and RiskMAP products

1. Hurricane Sandy MAT Schedule

1. NJ MAT Teams and Partners

Teams	Team Members	Partners
 Coastal 	• FEMA	• Local
 Hospitals and Other 	• NIST	 Sea Grant
Critical Facilities	• ICC	• HHS
High-Rise, Police, Fire, and SchoolsHistoric	• NAHB	• DOE
	• HUD	• EPA
	• Industry	 NJ Builders Association
	 Higher education 	
	 National subject matter experts 	



2. Summary of MAT Field Work

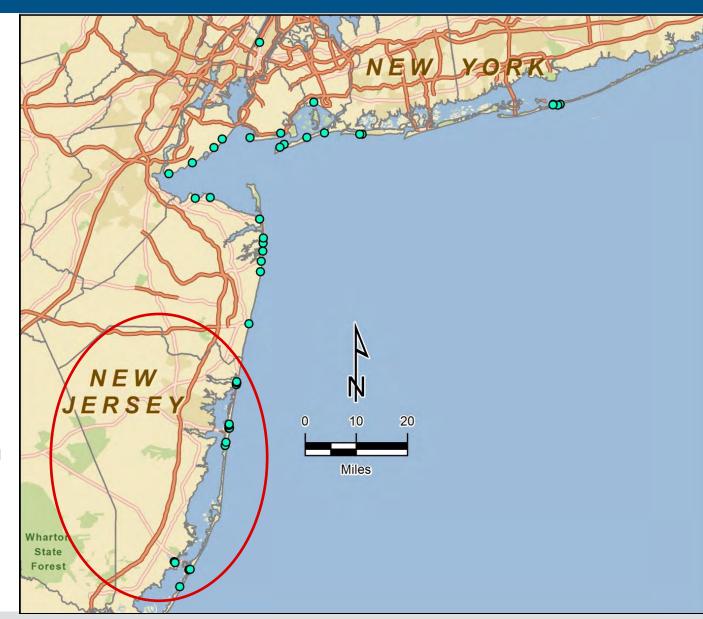
MAT deployed in 4 sub-teams:

- Coastal Team
- Hospitals and Other Critical Facilities Team
- High-Rise,
 Police,
 Fire, and
 Schools Team
- Historic Team



3. Data, GIS, ABFE, and Mapping

- The MAT is working across FEMA groups and Federal Agencies to coordinate data
- FEMA Modeling Task Force (MOTF) produced high resolution Hurricane Sandy depth grids and flood extents using USGS HWM Points – used by teams in the field



Key Locations Visited

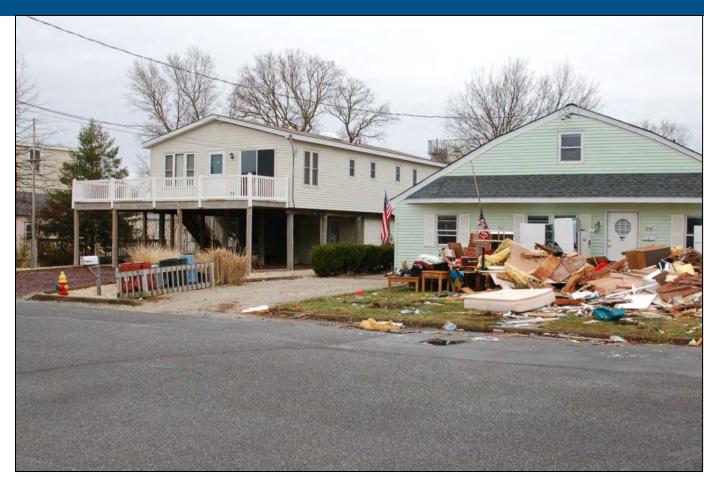
OCEAN COUNTY:

- Manahawkin
- Beach Haven
- Seaside Park
- Seaside Heights
- Ortley Beach
- Lavallette
- Normandy Beach
- Mantoloking

Key Locations Visited

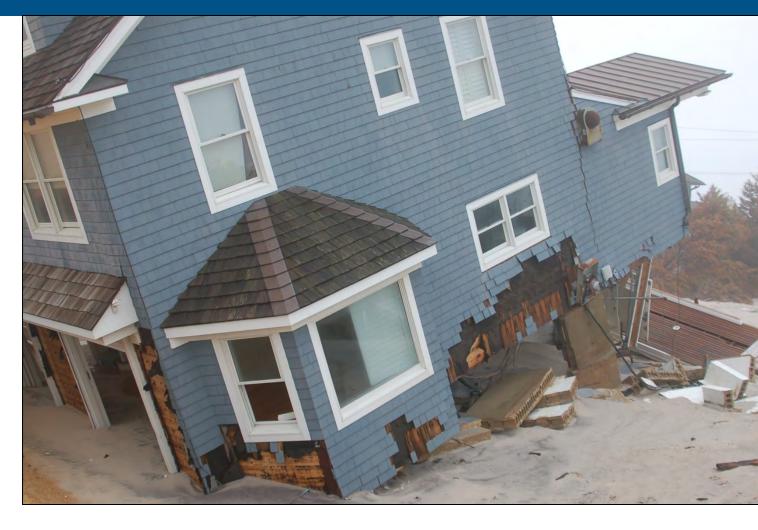
MONMOUTH COUNTY:

- Manasquan
- Sea Girt
- Belmar
- Asbury Park
- Long Branch
- Monmouth Beach
- Sea Bright
- Highlands
- Keansburg
- Union Beach



Key observations

- Widespread damage from inundation and shallow flooding
- Mechanical and utility equipment in lower levels and basements were flooded

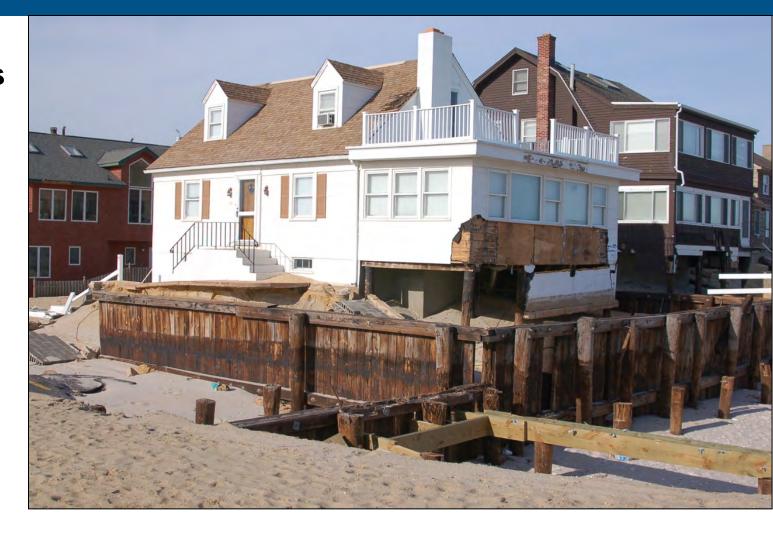


Key observations

 Erosion and wave damage along shoreline

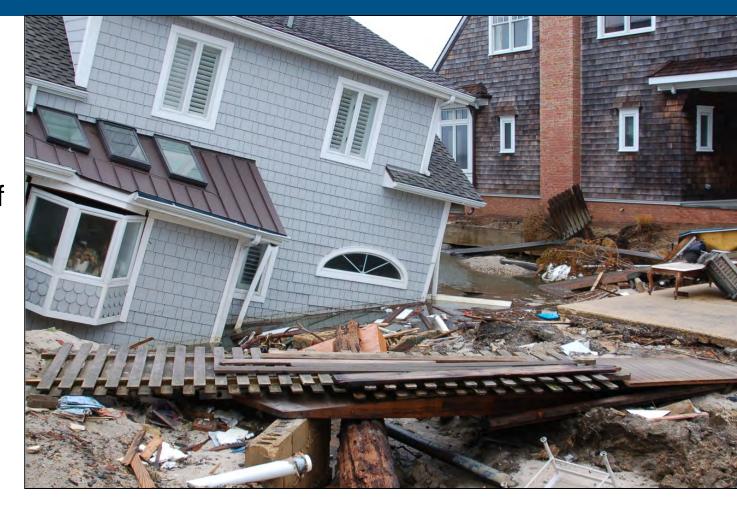
Key observations

 Wide dunes and beaches reduced damage



Key observations

 Building damage in close proximity to shore protection



Key observations

 Local scour and undermining of shallow foundations

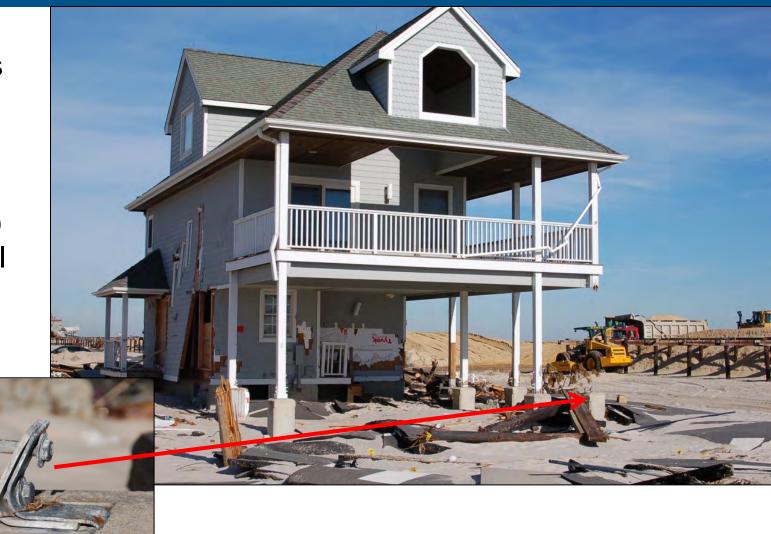
Key observations

 Load Path issues with old and new construction

Key observations

 Inadequate foundations for coastal flood and erosion conditions

Key observations


 New construction was placed atop old foundations

Key observations

 Floodborne debris (buildings, boardwalks) was plentiful

Analysis Focus Areas:

- Coastal Foundations
- Continuous Load Paths
- Elevation of Equipment and Utilities
- Proximity to Shore Protection and Debris Sources

Take-Aways/ Successful Stories

 Owner elected to elevate above BFE before Sandy

Take-Aways/ Successful Stories

 Builder elected to elevate above BFE before Sandy

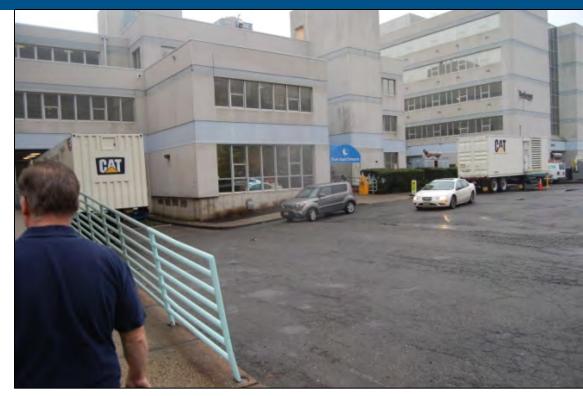
Take-Aways/Successful Stories

 Longer straps between foundation and floor joists helped building in background stay on foundation (similar house in foreground had short straps)

Key Locations Visited

- Palisades Medical Center
- Hoboken University Medical Center
- Bayonne Medical Center
- Jersey City Medical Center
- Nursing Home/Senior Care Centers
- PATH Harrison
 Maintenance Facility
- PATH Hoboken Terminal
- Passaic Valley WWTP
- Gas stations

Key Observations: Hospitals


- Loss of Emergency Power
- Loss if Vertical Conveyance/Elevators
- Loss of Domestic/Potable Water
- Loss of Telecom/IT
- Loss of Equipment
- Submarine Door Enclosure Performance
- Loss of Hospital Services

Key Observations: Hospitals

- Loss of Emergency Power
 - Loss of fuel to generator (tank failure or inability to pump)
 - Inundation of emergency power equipment (generator set) or emergency power distribution equipment (switchgear)
- Loss if Vertical Conveyance/Elevators
 - Controls lost (sensors in elevator pit)
 - Loss of power

Key Observations: Hospitals (continued)

- Loss of Domestic/Potable Water
 - Internal failure Loss of booster pumps or pumps that fill the tanks
 - External failure Loss of municipal water
- Loss of Telecom/IT
- Loss of Equipment
 - Emergency room equipment
 - Radiology equipment
 - Other equipment

Key Observations: Hospitals (continued)

Hospital Baseline Information

	Palisades	Hoboken	Jersey City	Bayonne
In-Patient				
Total Beds	202	160	293	N. I.
Avg Daily	150	140	N. I.	N. I.
Census				
Annual	10,780	N. I.	N. I.	N. I.
Discharges				
ICU Beds	10	N. I.	N. I.	15
Peds Beds	6	26	N. I.	0
Psychiatric	0	52	30	15
Beds				
Out-Patient				
Annual ED	29,972	40,000	67,000	26,000
Visits				
Annual Clinic	NA	N. I.	Psych	NA
Visits			only	

Impact on Clinical Services

W= Direct loss due to water, P= Indirect loss due to power, N= No loss, NA= Service not provided

	5 li l		I .	5
	Palisades	Hoboken	Jersey	Bayonne
			City	
In-Patient				
Med-Surg Beds	Р	Р	Р	Р
ICU Beds	Р	Р	Р	Р
Pediatric Beds	NA	Р	Р	Р
Psychiatric Beds	NA	Р	Р	Р
Clinical Services				
Major ORs	Р	Р	Р	Р
Minor ORs	W/P	Р	Р	Р
Radiology	W/P	W/P	Р	Р
Laboratory	W/P	Р	Р	Р
Dialysis	Р	NA	Р	Р
Out-Patient				
Emergency	Р	W	W/P	Р
Department				
Clinics	NA	W	W/P	Р
Support Services				
Kitchen	Р	W	Р	Р
Laundry	Р	NA	Р	Р
Admin	Р	W	Р	Р
Med Record	Р	W/P	Р	Р

2. Other Critical Facilities

Key Observations: Other Critical Facilities

- Senior Care Centers
 - Same issues as hospitals
- PATH Facilities
- Passaic Valley Wastewater Treatment Plant
- Gas Stations

Analysis Focus Areas

- Flood damage nearly all due to inundation (i.e, hydrostatic, not hydrodynamic forces)
- Emergency power system design focus is to mitigate normal power loss, not flood or high wind event
- Flood protection planning typically in two dimensions instead of three (i.e., perimeter wall openings protected but not floor drains)
- Fuel tank location relative to emergency generator

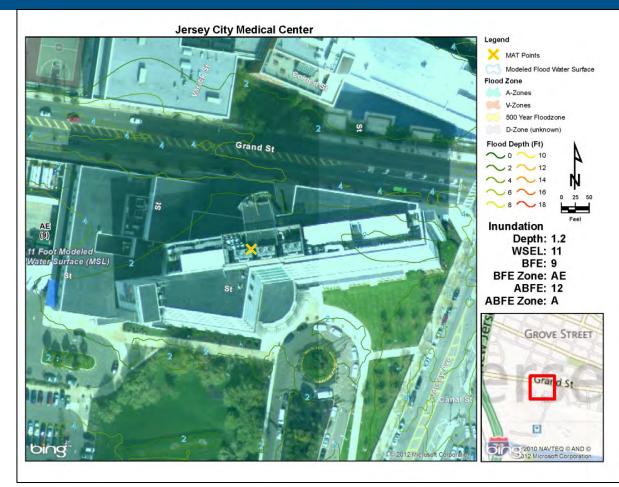
Key Take-Aways/Success Stories

- Below-grade spaces and utility systems are extremely vulnerable to inundation
- Emergency power systems are not being looked at holistically
 - Emergency power systems are more vulnerable to flooding than normal power
- Examine quick connects for temporary power and other systems
- Consider Building code changes related to electrical systems (NFPA 99)

Key Take-Aways/Success Stories

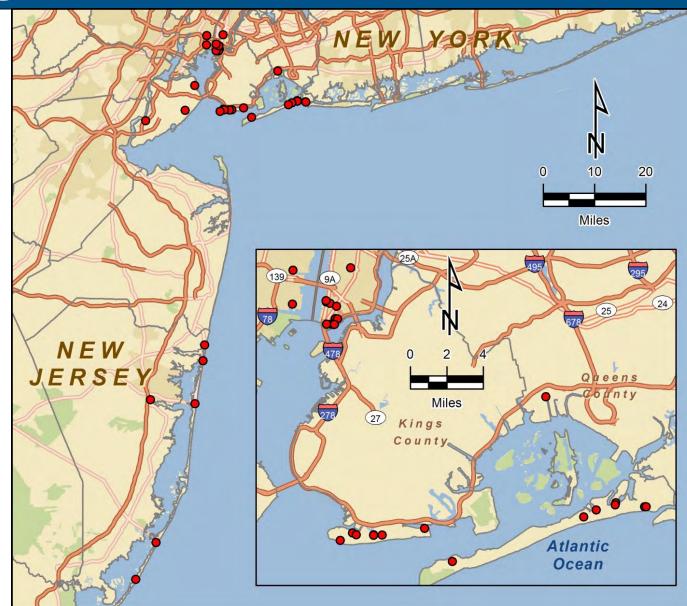
- Examine Critical Facility Functionality
 - Elevate or floodproof critical utility systems
 - Elevate or floodproof critical equipment
 - Relocate non-critical services to lower levels (i.e., below-grade or at grade)
- Protect fuel supplies for emergency power systems (focus on liquid fuels – diesel and fuel oil)
 - Day tanks
 - Pumping systems
 - Main fuel tanks
 - Tank vents

Key Take-Aways/Success Stories


- Mitigate electrical systems
 - Emergency Power
 - Elevate generator
 - Elevate distribution equipment
 - Isolate supplies to vulnerable equipment (i.e., pumps, lighting below BFE)
 - Normal Power
 - Elevate main switchgear
 - Elevate utility transformers (i.e., pad-mounted vs. vault)
 - Elevate distribution equipment
 - Isolate supplies to vulnerable equipment (i.e., pumps, lighting below BFE)
- Install new connections or maintain existing connections for temporary utilities (i.e., power, potable water, heat)

Success Story: Jersey City Medical Center (Jersey City, NJ)

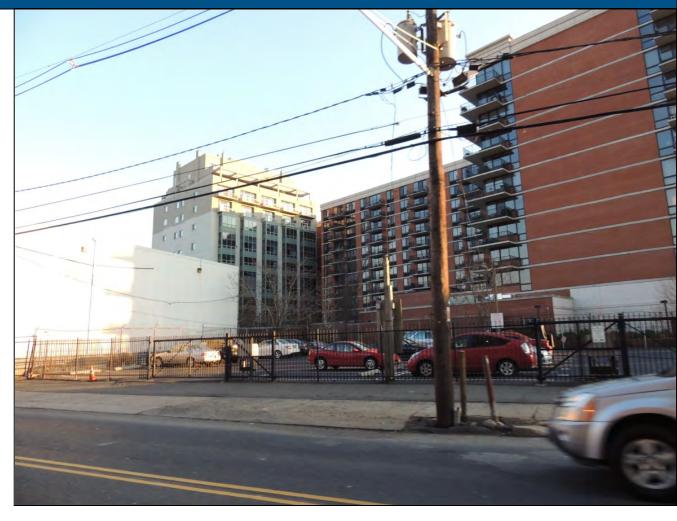
- Post-FIRM facility constructed in 2004
- Back-up power generators functioned properly and expect to be fully operational in January 2013



2. High Rise, Police, Fire, Schools

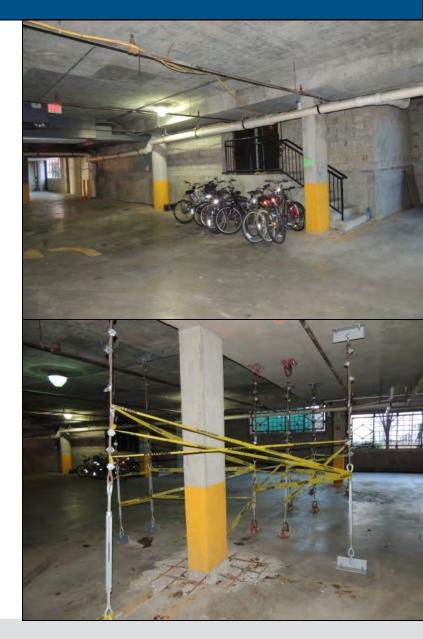
Key Locations Visited

- Approximately
 - 2 Schools
 - 18 Fire/EMS
 - 7 Police
 - 1 High Rise



Summary of Locations Visited: High-Rise

- Jersey City
- Age of construction
 - 2006
- Occupancy Type
 - Residential

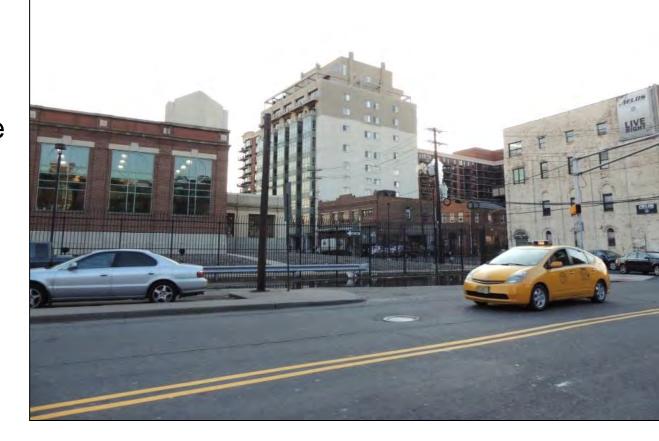


Key Observations: High- Rise

- Damages
 - Damage within parking garage with ongoing repairs
 - Vehicles with parking garage and trash compactor in lower level
- Utilities were elevated
 - Emergency switch gear and generator elevated along first floor
 - Mechanical room on top floor

Analysis Focus Areas: High-Rise

- Floodproofing
- Mechanical/Electrical Rooms
- Sustainability



Key Take-Away/ Success Stories: High-Rise

- Elevate mechanical and electrical service components
- Require emergency power for floodproofed buildings

Summary of Locations Visited: Police and Fire

- Varied in age of construction
- Facilities with and without basements

Key Observations: Police and Fire

- Minimal structural and envelope damage
- Utilities in basements or not elevated on first floor, damaged
- Emergency Power
- Damage varied based on elevation of equipment
- Damage to first floor contents/equipment

Analysis Focus Areas: Police and Fire

- Impact on emergency services
- Mechanical/Electrical Rooms
- Floodproofing opportunities

Key Take-Away/Success Stories: Police and Fire

- Elevate mechanical and electrical service components
 - FEMA Recovery Policy 9526.1 allows for Hazard Mitigation Funding Under Section 406 (Stafford Act) to elevate electrical panels, machinery rooms, and emergency generators above the BFE or dry floodproof them in buildings not substantially damaged as long as the mitigation costs are within 100% of the repairs cost (otherwise a traditional benefit-cost analysis is required). Maximize on this mitigation opportunity.
- Design above 0.2% annual change flood (500-year)
- Install/require emergency power in fire and police stations

Summary of Locations Visited: Schools

- Sites were Pre FIRM
- Ocean County

Key Observations: Schools

- Inundated with about 2' of water in one school and basement of other school
- Elevation/location of utilities was the critical factor

Analysis Focus Areas: Schools

- Building and contents damage
- Mechanical/Electrical Rooms
- Floodproofing opportunities

Key Take-Away/Success Stories: Schools

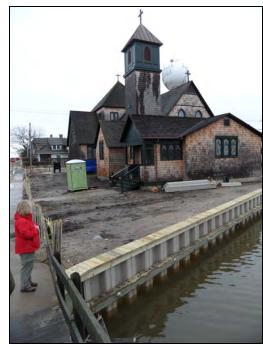
- Elevate mechanical and electrical service components
 - FEMA Recovery Policy 9526.1 allows for Hazard Mitigation Funding Under Section 406 (Stafford Act) to elevate electrical panels, machinery rooms, and emergency generators above the BFE or dry floodproof. Maximize on this mitigation opportunity.
- Design above 0.2% annual change flood (500-year)
- Require emergency power in any floodproofed buildings

Key Locations Visited

- Ellis Island
- Red Hook, Brooklyn
- Lower Manhattan
- Queens

Apartment Building

- 123 Willow Street, Hoboken, NJ 07030
- Below grade basement inundated with floodwaters
- High water mark indicated in red (left slide)



All Saints Episcopal Church

 500 Lake Avenue, Bay Head, NJ 08742

 Removal of exterior shingles to dry interior woodwork

 Bulkhead at bank replaced

Summary of Locations Visited: Historic

Erie Lackawanna Railway – Hoboken Terminal

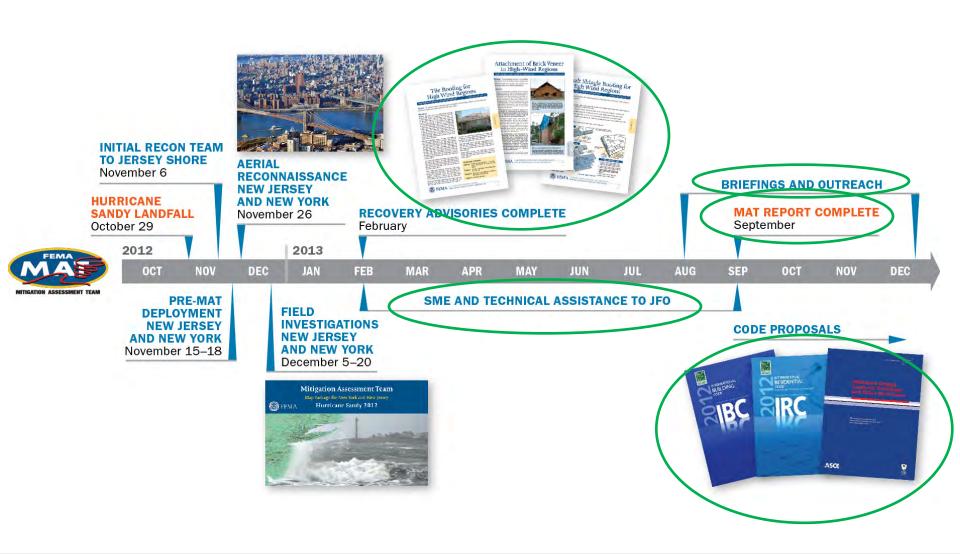
- Minimal structural damage
- Utilities, equipment and train cars damaged from floodwaters.
- HWM approximately 5' above ground

Key Observations

- Elevation: Many historic buildings are not suitable for elevation due to their historic appearance and siting constraints
- Opening Protection: Abundant replacement window and door damage
- Boardwalks: Failures had weak connections, inadequate plank nailing, and flow-through obstructions
- Structural: Unreinforced masonry hydrostatic pressure failures were common

Analysis Focus Areas

- Elevation needs: Utilities and buildings (where feasible)
- Opening Protection: Flood-resistant window and door replacements - retain building character and protects aesthetics
- Boardwalks: Community interest to retain setting, location, and historic appearance, with more resilient reconstruction
- Structural: Retrofit methods for hardening unreinforced buildings that protects aesthetics
- Secondary Mitigations: Contingency preparations to protect historic features in the event that primary mitigations are inadequate


Take-Aways/Success Stories

- Increase MAT outreach to Historic Preservation groups and organizations
- More analysis on the initial response of property owners to protect their structures
- Strong support for sustainable protection of historic properties
- Open design of some structures allows flow through and reduces damage

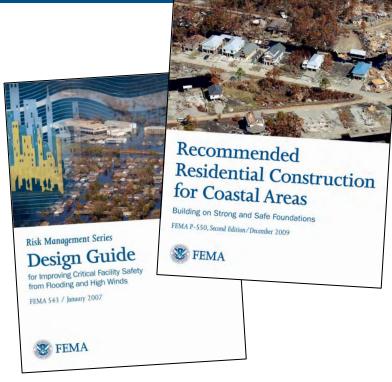
3. MAT Support

3. Recovery Advisories

Updated Guidance

- Potential topics include:
 - Initial Restoration of Flooded Buildings
 - Designing for Flood Levels Above the BFE
 - Load Paths for Coastal Buildings
 - Erosion, Scour, and Foundation Design
 - Considerations for Improving Your Critical Facility Functionality

NEW:


- Potential topics include:
 - Restoration of Utilities in Non-Substantially Damaged 1-4 Family Residential Buildings
 - Mid- and High-Rise Building Flood Mitigation
 - Providing Fuel for Emergency Power Systems
 - Design of Facilities in Close Proximity to Shore Protection and Dunes
 - Historic Buildings
 - Designing for Flood Levels Above ABFE/BFE
 - Construction in Coastal A Zones
 - Other

3. MAT Support

- Technical Assistance to JFO
- Building code technical assistance
- Briefings and outreach
- Potential training courses
 - Residential Coastal Construction
 - Improving Critical Facility Safety From Flooding and High Winds
 - Flood Provisions of the I-Code
 Series, ASCE 24 and Flood CodeMaster
 - Best Practices for Flood and Wind Mitigation
 - Coastal Foundation Design and Construction for Design Professionals
 - Retrofitting Floodprone Buildings
 - NFIP Technical Bulletins

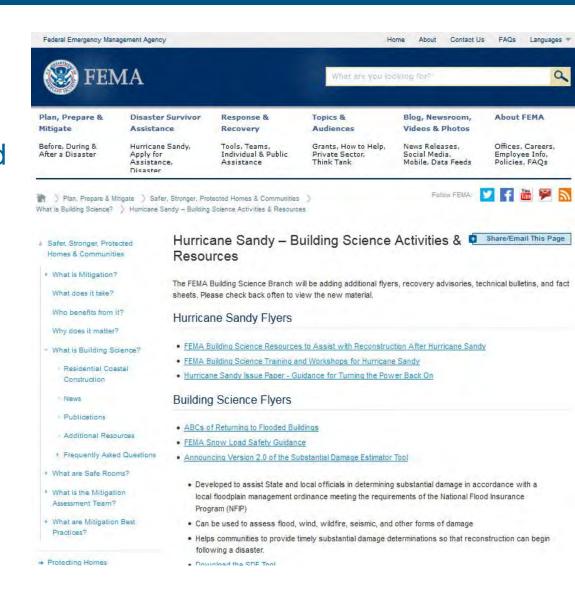
3. MAT Support – Code Changes

2015 IRC Code Change Proposal: FEMA Proponent

- Section R322.2.3: Flood-resistant masonry foundation walls
- Enhanced Reinforcement Tables proposed
- Coastal A Zone (CAZ) and Zone A (non-CAZ)
- Tables per Flood Load Analysis
- Sandy MAT Observations cited
- Proposal can help rebuild stronger
- Code cycle begins in January

4. MAT Report

Comprehensive MAT Report summarizing the observations, conclusions, and recommendations made by a collaborating team of subject matter experts, industry, higher education professionals, and Federal, State, and local government officials



5. Available Building Science Resources

- Hurricane Sandy page created on FEMA.gov http://www.fema.gov/build ing-science/hurricanesandy-building-scienceactivities-resources
- Contains
 - Relevant flyers
 - Publications
 - Brochures
 - Resources and links
 - Toolkit CD and Building Science Catalog

5. Available Resources

- FEMA Region II has set up an ABFE site: http://www.region2coast al.com/sandy/abfe
- Links to Building Science pages and resources
- Building Science providing key support for knowing risks, roles, and taking action

Learn Why ABFEs are Important to You!

Know Your Role.

ABFE Information is Now Available for the Following New Jersey Counties: Atlantic, Bergen, Burlington, Cape May, Essex, Hudson, Middlesex, Monmouth, Ocean, and Union.

Know Your Risk.

View the Advisory Flood Hazards for your Location Today!

 View online through FEMA's Interactive ABFE Map. View the video tutorial or read the quick start guide. Mobile device users: zoom directly to FEMA will assist communities in applying the ABFEs as they evaluate their risk during the long term recovery and re-building phase. The ABFEs will also be provided to other Federal and State agencies and local governments to assist in carrying out their recovery efforts. Find out below why ABFEs are important to you.

Community Officials - State and

Explore How You Can Take Action Now!

Take Action!

As communities begin to recover from the devastating effects of Hurricane Sandy, it is important to recognize lessons being learned and to employ mitigation actions that ensure structures are rebuilt stronger, safer, and less vulnerable to future flooding events.

Rebuild Safer and Stronger

If your home or business has been flooded, you can utilize many of

6. Question and Answer

Flood/Wind Building Science Helpline:

FEMA-BuildingScienceHelp@dhs.gov (866) 927-2104

http://www.FEMA.gov/Rebuild/BuildingScience

