

Annual Air Quality Monitoring Report – Blenheim 2017

Technical Report No: 18-003 March 2018

Annual Air Quality Monitoring Report - Blenheim 2017

MDC Technical Report No: 18-003 ISBN 1179-819 (Online) ISBN 978-1-927159-77-4 (Online)

File Ref/Record No: E300-004-003-01/1859991

Date March 2018

Report Prepared for Marlborough District Council by

Emily Wilton Environet Limited

Marlborough District Council Seymour Square PO Box 443 Blenheim 7240 Phone: 520 7400 Website: <u>www.marlborough.govt.nz</u>

Executive Summary

Particulate is main air pollutant of concern in urban areas of New Zealand. The main measures of particulate are PM_{10} (particles less than 10 microns in diameter) and $PM_{2.5}$ (particles less than 2.5 microns in diameter). In 2017 monitoring of both size fractions was carried out in Redwoodtown and at the historical monitoring site in Middle Renwick Road (MRR) PM_{10} monitoring was also conducted. The main source of particulate in Blenheim during the winter is solid fuel burning for domestic home heating.

Monitoring data for PM_{10} were compared to the National Environmental Standard for Air Quality (NES) of 50 µg m⁻³ (24-hour average) and to the Ministry for the Environment's air quality guidelines and indicator categories. Comparisons are made with historical data to determine the likelihood of trends in concentrations.

Concentrations of PM_{10} breached the NES on 10 occasions in Redwoodtown with 11 exceedences of 50 µg m⁻³ (the NES allows for one exceedance per year). Blenheim was required to comply with the NES for PM_{10} by winter 2017. The maximum measured concentration during 2017 was 76 µg m⁻³. The annual average PM_{10} concentrations was 19 µg/m³ and is the highest recorded at the site since continuous monitoring commenced in 2005.

Concentrations of $PM_{2.5}$ exceeded 25 µg/m³ (24-hour average reporting guideline and WHO guideline) on 72 occasions. The annual average $PM_{2.5}$ concentration was 14 µg/m³. This compares with the current WHO guideline for $PM_{2.5}$ of 10 µg/m³.

The maximum PM₁₀ concentration measured at the MRR site was 26 μ g m⁻³ for 2017. The annual average concentration for this site was estimated to be 11 μ g/m³ for 2017 and compares with 11 in 2016 and 13 μ g/m³ for 2013-2015. An evaluation of trends at the MRR site suggests a decrease in annual average PM₁₀ concentrations at this site between 2000 and 2008 but no further reductions are evident since 2009.

Management measures to reduce PM_{10} concentrations to meet the NES have been included in the Proposed Marlborough Environment Plan (notified June 2016). Measures are based on a 2012 assessment which predicted concentrations would reduce from 2012–2017 in the absence of regulation. Potential reasons for the reductions not occurring include higher than anticipated emissions from newer burners and underestimated population increase in the airshed area from 2006-2013. Given the trend from 2012-2017 it would seem unlikely that the management options specified in the notified air plan would be effective in reducing PM_{10} concentrations to meet the NES.

Contents

Exec	cutive	e Summaryiii
1.	Intro	oduction1
2.	Meth	nodology3
	2.1.	Air quality monitoring sites4
		2.1.1. Middle Renwick Road (MRR) monitoring site
		2.1.2. Redwoodtown – Bowling Club Monitoring Site
	2.2.	Quality assurance
3.	Air c	quality monitoring in Blenheim10
	3.1.	PM ₁₀ concentrations at the MRR site10
	3.2.	PM ₁₀ concentrations at Redwoodtown – Bowling Club
	3.3.	PM_{10} and meteorology in Blenheim
4.	Tren	ids in PM ₁₀ concentrations in Blenheim22
5.	Sum	ımary23
Refe	renc	es24

List of Figures

Figure 2.1: Location of air quality sites and NIWA metrological site in Blenheim	4
Figure 2.2: Aerial photo of the MRR air quality monitoring site (red arrow points to monitoring location).	5
Figure 2.3: PM_{10} monitor at the MRR air monitoring site	6
Figure 2.4: Aerial photo of the Redwoodtown – Bowling Club air quality monitoring site (note: blue arrow depicts monitoring site).	7
Figure 2.5: PM_{10} monitor at the Redwoodtown – Bowling Club air quality monitoring site.	8
Figure 3.1: Daily winter PM_{10} concentrations measured at the MRR site during 2017.	10
Figure 3.2: Relations between daily winter PM_{10} concentrations at the MRR site and at Redwoodtown during 20167.	11
Figure 3.3: Comparison of PM_{10} concentrations measured at the MRR site from 2000 to 2017 to air quality indicator categories.	11
Figure 3.4: Comparison of daily PM_{10} concentrations each month during 2017 to air quality indicator categories at the MRR site.	12
Figure 3.5: Number of days when the NES was exceeded, the maximum concentration and the second highest concentration from 2006 to 2017 at the MRR site.	12
Figure 3.5: Annual average PM_{10} concentration from 2000 to 2017 at the MRR site.	13
Figure 3.7: 24-hour average PM_{10} concentrations measured at the Redwoodtown – Bowling Club site during 2017.	15
Figure 3.8: Comparison of PM_{10} concentrations measured at Redwoodtown – Bowling Club site during 2006 to 2017 to air quality indicator categories.	16
Figure 3.9: Comparison of daily PM_{10} concentrations each month during 2017 to air quality indicator categories.	16
Figure 3.10: Number of days when 50 μ g m ⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2017.	16
Figure 3.11: Hourly average PM_{10} , $PM_{2.5}$, wind direction and temperature on days when PM_{10} concentrations exceeded 50 µg m ⁻³ (24 hour average) at Redwoodtown.	21
Figure 4.1: Trends in PM_{10} concentrations after adjusting for meteorological conditions	22

List of Table

Table 1.1: National Environmental Standards for Ambient Air Quality (MfE, 2004)	2
Table 1.2: Ambient air quality guidelines for New Zealand (MfE, 2002)	2
Table 1.3: Environmental Performance Indicator categories for air quality (MfE, 2002)	3
Table 2.1: Site summary details for the MRR air quality monitoring site.	6
Table 2.2: Site summary details for the Redwoodtown – Bowling Club air quality monitoring site.	9
Table 3.1: Summary of PM_{10} concentrations measured at the MRR monitoring site from 2000 to 2017	14
Table 3.2: Summary of PM_{10} concentrations measured at Redwoodtown – Bowling Club site from 2002-2016	18

1. Introduction

The main air contaminant of concern in Blenheim and other urban areas of New Zealand is particulate or particles in the air. The main indicator of particulate used has been PM_{10} , particles in the air less than 10 microns in diameter and this size fraction forms the basis of the National Environmental Standard (NES). For the past decade, however, the scientific community has been of the view that the smaller of these particles, those less than 2.5 microns in diameter are a stronger indicator of health.

Table 1.1 shows the contaminant, the concentration, averaging period and allowable exceedances as required by the NES (Ministry for Environment, 2004). The NES for PM_{10} is set at 50 µg m⁻³ with one allowable exceedence per 12-month period. Compliance with this target was required by September 2016 in Blenheim. All other areas in Marlborough must remain compliant with the NES.

The Ministry for the Environment are in the process of reviewing the NES for particulate, however, with a focus on the most appropriate form and averaging period. It is likely that the revised NES will be for the $PM_{2.5}$ size fraction and annual average concentrations. A likely implication is the need for $PM_{2.5}$ monitoring either in addition to or instead of PM_{10} monitoring. The implications for the current PM_{10} requirements are unclear at this stage.

This report summarises concentrations of PM_{10} that were measured at two sites in Blenheim during 2017. The main site for reporting PM_{10} relative to National Environmental Standards is at the Redwoodtown Bowling Club. A second-long term monitoring site in Blenheim is located at Middle Renwick Road (MRR).

Air quality monitoring in the Marlborough Region includes monitoring of PM_{10} at the MRR monitoring site, intermittent monitoring of PM_{10} at the Redwoodtown Bowling Club site, survey PM_{10} monitoring in Renwick during 2000 and 2002, monitoring for PM_{10} in Picton during 2008 and 2009, visibility surveys and passive sampling for nitrogen oxides and sulphur oxides. From 2007 to early 2008, PM_{10} concentrations were measured at the Croquet Club in Redwoodtown in addition to the main monitoring site at the Bowling Club. A site on Brooklyn Street in Redwoodtown was temporarily used to measure PM_{10} concentrations during 2004.

Air quality monitoring data in other urban areas of New Zealand indicates that it would seem unlikely that concentrations of NES contaminants other than PM_{10} would be in breach in Blenheim. Concentrations of other contaminants even in large urban areas are typically within the NES and guideline concentrations. Because emissions of other contaminants in Blenheim are far lower than large urban areas such as Christchurch, it would seem unlikely that concentrations of other key urban air pollutants would be in breach of the NES or air quality guidelines. The exception to this may be benzo(a)pyrene concentrations, which appear to occur well in excess of guideline concentrations in Christchurch.

The Ministry for the Environment also provides guidelines for ambient air quality (Ministry for Environment, 2002). Table 1.2 shows the ambient air quality guidelines and Table 1.3 details the air quality indicator categories to assist in the presentation and management of air quality in New Zealand. Air quality monitoring data in this report are presented relative to air quality guidelines and these indicator categories. These categories provide a useful perspective on the overall air quality and provide a valuable tool for evaluating trends in concentrations over time.

Contaminant	NES values						
	Concentration	Averaging Period	Allowable exceedences / year				
Particles (PM ₁₀)	50 µg m-3	24-hour	1				
Nitrogen dioxide	200 µg m-3	1-hour	9				
Sulphur dioxide	350 µg m-3	1-hour	9				
Sulphur dioxide	570 μg m-3	1-hour	0				
Ozone	150 μg m-3	1-hour	0				

Table 1.1: National Environmental Standards for Ambient Air Quality (MfE, 2004).

Table 1.2: Ambient air quality guidelines for New Zealand (MfE, 2002).

Ocataminant	2002 guideline values								
Contaminant	Concentration	Averaging Period							
Carbon monoxide	30 mg m-3	1-hour							
	10 mg m-3	8-hour							
Particles (PM ₄₀)	50 µg m-3	24-hour							
	20 µg m-3	Annual							
Nitrogen dioxide	200 µg m-3	1-hour							
	100 µg m-3	24-hour							
Sulphur dioxido ^b	350 µg m-3	1-hour							
ad d nzene (year 2002) nzene (year 2010) B-Butadiene rmaldehyde etaldehyde nzo(a)pyrene ercury (inorganic) ^d ercury (organic) romium VI ^d romium metal and chromium III senic (inorganic) ^d	120 µg m-3	24-hour							
07000	150 µg m-3	1-hour							
Ozone	100 µg m-3	8-hour							
Hydrogen sulphide ^c	7 µg m-3	1-hour							
Lood d	0.2 μg m-3	3-month moving,							
	(lead content of PM10)	calculated monthly							
Benzene (year 2002)	10 μg m-3	Annual							
Benzene (year 2010)	3.6 µg m-3	Annual							
1,3-Butadiene	2.4 µg m-3	Annual							
Formaldehyde	100 µg m-3	30-minutes							
Acetaldehyde	30 µg m-3	Annual							
Benzo(a)pyrene	0.0003 µg m-3	Annual							
Mercury (inorganic) ^d	0.33 μg m-3	Annual							
Mercury (organic)	0.13 µg m-3	Annual							
Chromium VI ^d	0.0011 µg m-3	Annual							
Chromium metal and chromium III	0.11 µg m-3	Annual							
Arsenic (inorganic) ^d	0.0055 µg m-3	Annual							
Arsine	0.055 µg m-3	Annual							

Notes for Table 1.2:

- ^a All values apply to the gas measured at standard conditions of temperature (0° C) and pressure (1 atmosphere).
- ^b The sulphur dioxide guideline values do not apply to sulphur acid mist.
- ^c The hydrogen sulphide value is based on odour nuisance and may be unsuitable for use in geothermal areas.
- ^d The guideline values for metals are for inhalation exposure only; they do not include exposure from other routes such as ingestion. These other routes should be considered in assessments where appropriate.

Table 1.3: Environmental Performance Indicator categories for air quality (MfE, 2002).

Category	Value relative to guideline	Comment
Excellent	Less than 10% of the guideline	Of little concern: if maximum values are less than a tenth of the guideline, average values are likely to be much less
Good	Between 10% and 33% of the guideline	Peak measurements in this range are unlikely to affect air quality
Acceptable	Between 33% and 66% of the guideline	A broad category, where maximum values might be of concern in some sensitive locations but generally they are at a level which does not warrant urgent action
Alert	Between 66% and 100% of the guideline	This is a warning level, which can lead to exceedences if trends are not curbed
Action	More than 100% of the guideline	Exceedences of the guideline are a cause for concern and warrant action, particularly if they occur on a regular basis

An emission inventory for Blenheim was updated in 2017 to provide a more recent estimate of the sources of PM_{10} and other contaminant emissions (Wilton, 2017). The results of the inventory indicated that domestic home heating was the main source of PM_{10} emissions, contributing to around 90% of the daily wintertime PM_{10} . Motor vehicles contributed to 1% of PM_{10} emissions, outdoor burning contributed to 8% and industry contributed to 1% of total wintertime emissions.

2. Methodology

Air quality monitoring of particulate in Blenheim during 2017 was carried out at the two historical monitoring sites (Redwoodtown and Middle Renwick Road (MRR)). At the Redwoodtown Bowling Club site in Blenheim, two 5014i beta attenuation monitors (BAM) were used to measure PM_{10} and $PM_{2.5}$ as well as a high-volume sampler measuring PM_{10} . The purpose of the high-volume sampler was to determine the relationship of the samplers to the high-volume reference method.

At the MMR site a gravimetric high-volume sampler, a method compliant with the NES reference method specifications, was used. High-volume sampling was carried out on a one day in three sampling regime with samples collected over a 24-hour period from midnight to midnight. Although compliant in terms of the principles of operation, the high-volume sampler is difficult to operate continuously because of the requirement for filter change at midnight. Consequently, this method as used at the MMR site was not compliant with the NES. The site was historically classified as a residential neighbourhood monitoring site in accordance with the Ministry for the Environments Good Practice Guide for Air Quality Monitoring (Ministry for the Environment, 2009) but has been revised to traffic peak owing to its proximity to the road.

Prior to 2016, meteorological data, including wind speed, wind direction were obtained from a NIWA site on the outskirts of Blenheim. Ambient temperature data was collected at the Bowling Club site in Redwoodtown. All meteorological data (wind speed, temperature and wind direction) are now monitored at the Redwoodtown monitoring site.

2.1. Air quality monitoring sites

Figure 2.1 shows the MRR site, which provides a historical record of PM_{10} in Blenheim and is located to the north-west of Blenheim, the Redwoodtown Bowling Club site which has been operational since 2002, and the NIWA metrological monitoring site, which was used for meteorological data prior to 2016.

In 2007 a site at the Croquet Club was established for the purposes of evaluating the relationship between Brooklyn Street area PM_{10} and PM_{10} concentrations measured at the Bowling Club. This was considered important because PM_{10} concentrations of the magnitude measured during 2004 at Brooklyn Street had not been measured at the Bowling Club and because the reductions required in PM_{10} concentrations in Blenheim had been dependent on the Brooklyn Street results. The results from work undertaken in 2007 and reported in the '2007 Air Quality Monitoring Report' (Wilton, 2008) indicated that the Brooklyn Street site was likely to be affected by localised sources of PM_{10} and should not be used for air quality management purposes. Details of the Croquet Club site are outlined in '2008 Air Quality Monitoring Report' (Wilton & Baynes, 2009).

Figure 2.1: Location of air quality sites and NIWA metrological site in Blenheim.

2.1.1. Middle Renwick Road (MRR) monitoring site

The MRR air quality monitoring site was established in 2000 at the backyard area of a Council site at 106 Middle Renwick Road. An aerial picture of the MMR site and its surrounds are shown in Figure 2.2, and Figure 2.3 shows the high-volume sampler located at the MRR monitoring site. Table 2.1 provides site details for the site.

Figure 2.2: Aerial photo of the MRR air quality monitoring site (red arrow points to monitoring location).

Figure 2.3: PM₁₀ monitor at the MRR air monitoring site.

Site name	Blenheim – 106 Middle Renwick Road								
Site contact details	Marlborough District Council								
Description of site	Grass lawn near to roadside. Mixed use area with proximity to industrial, residential and high traffic count road.								
Site category	Traffic peak								
Purpose of site and sources	To measure ambient air concentrations of PM ₁₀ at the historical air quality monitoring site in Blenheim. Main source during the winter months is solid fuel burning for domestic heating.								
Proposed duration of monitoring	Ongoing								
Contaminants monitored	PM ₁₀								
Site co-ordinates	E1678182 N5404327								
Date of site installation	January 2000								
Meteorological characteristics or area	Low wind speeds occur regularly during the winter months. Temperature inversions are likely.								
Sample frequency	One day in three from May 2005 One day in six prior to this during the summer and one day in three during the winter.								
Inlet height	1.5 metres								
Averaging period	24-hour								

Table 2.1: Site summary details for the MRR air quality monitoring site.

2.1.2. Redwoodtown – Bowling Club Monitoring Site

In 2010 air quality monitoring took place at the main air quality monitoring site at the Blenheim Bowling Club on Weld Street in Redwoodtown. Figures 2.4 and 2.5 show the surrounding area and the location of the monitoring site within the Bowling Club grounds. Summary site details are given in Table 2.2.

Figure 2.4: Aerial photo of the Redwoodtown – Bowling Club air quality monitoring site (note: blue arrow depicts monitoring site).

Figure 2.5: PM₁₀ monitor at the Redwoodtown – Bowling Club air quality monitoring site.

Site name		Redwoodtown – Bowling Club								
Site contact details		Marlborough District Council								
Description of site		The site is located at the Blenheim Bowling Club, which is to the south-east of central Blenheim. The surrounding area includes a bowling green, gravel petanque area and paved areas.								
Site category		Residential neighbourhood								
Purpose of site and sources		To measure worst-case ambient air concentrations of PM_{10} in Blenheim. The main source during the winter months is solid fuel burning for domestic heating. The site is downwind of a large residential area for meteorological conditions conducive to poor air quality.								
Proposed duration of monitoring		Ongoing								
Contaminants monitored		PM ₁₀								
Site co-ordinates		E1679764 N5402328								
Date of site installation		Monitoring from 2000-2003. Permanent site since 2005.								
Meteorological characteristics c area	of	Low wind speeds occur regularly during the winter months. Temperature inversions are likely.								
Sample frequency		Continuous								
Inlet height		3.5 metres								
Averaging period		24-hour and hourly								

Table 2.2: Site summary details for the Redwoodtown – Bowling Club air quality monitoring site.

2.2. Quality assurance

Marlborough District Council staff operated the high volume PM₁₀ samplers, including filter changing.

Flow calibrations were carried out every month, normally during the morning. Filters were couriered to Hill Laboratories, who undertook filter weighing in accordance with the New Zealand and Australia standard for high volume sampling. Hill Laboratories hold IANZ accreditation, for high volume PM₁₀ sampling.

Transportation of filters occurs at the end of each month, with filters stored and transported in snaplock bags at ambient temperature. Quality assurance methods include the analysis of one field blank per site per month. Field blanks outside of the "acceptable" range (± 8 mg per filter) are noted in a report from Hills Laboratory.

Operation of the BAM is also carried out by MDC staff. Ten minute data is recorded by the instrument and logged by an iQuest iRIS 350 datalogger. The BAM filter spot is moved on every eight hours. Results are telemetered hourly to MDC and stored in the hilltop database. Annual calibrations are carried out by Lear Siegler.

3. Air quality monitoring in Blenheim

3.1. PM₁₀ concentrations at the MRR site

Figure 3.1 shows daily average PM_{10} concentrations measured at the MRR site during 2017. The maximum measured 24-hour average PM_{10} concentration was 26 µg m⁻³ and was measured on 16 June 2017. The corresponding concentration at Redwoodtown was 66 µg m⁻³.

Figure 3.2 shows a reasonable correlation between gravimetric PM_{10} concentrations measured at MRR during 2017 with those in Redwoodtown with the latter measuring less than half of the concentrations at Redwoodtown. The correlation is similar to that observed for 2016.

Concentrations of PM_{10} at MRR have exceeded 50 µg m⁻³ on only a few years. In 2008 the maximum concentration recorded was 51 µg m⁻³. The only other years that concentrations above 50 µg m⁻³ have been recorded at this site are 2000 (56 µg m⁻³), 2003 (75 µg m⁻³) and 2008 (51µg m⁻³).

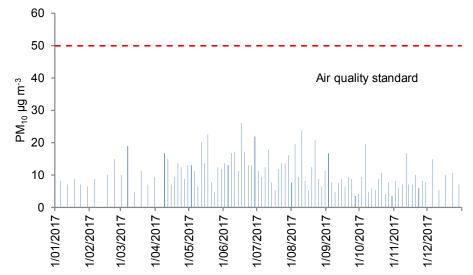
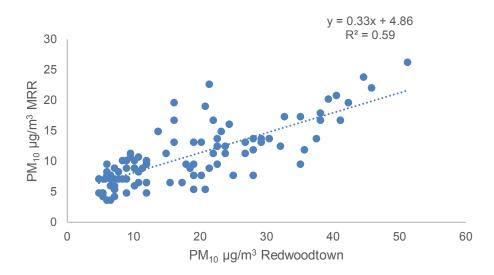



Figure 3.1: Daily winter PM₁₀ concentrations measured at the MRR site during 2017.

Figure 3.2: Relations between daily winter PM_{10} concentrations at the MRR site and at Redwoodtown during 2017.

Figure 3.3 shows changes in PM_{10} concentrations relative to MfE air quality indicator categories (shown in Table 1.3) at the MRR site from 2000 to 2017. Data indicate improving PM_{10} concentrations at the MRR monitoring site between 2000 and 2011 with no further improvement evident after this time. Data for 2017 are similar to those for 2015 and 2016 with less than 20% of the concentrations above 16.5 μ g/m³ (33% of the NES).

Monthly variations in PM_{10} concentrations compared to air quality indicators for 2016 are shown in Figure 3.4. Figure 3.5 shows the number of days when the NES was exceeded, the maximum concentration and the second highest concentration for 2017 and for previous years.

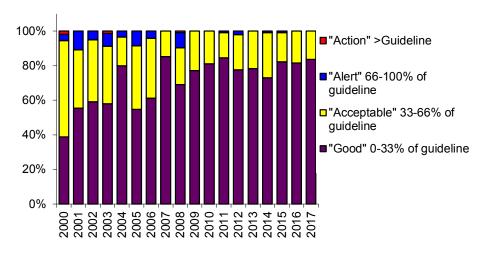


Figure 3.3: Comparison of PM_{10} concentrations measured at the MRR site from 2000 to 2017 to air quality indicator categories.

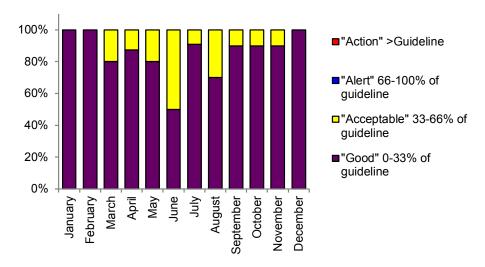
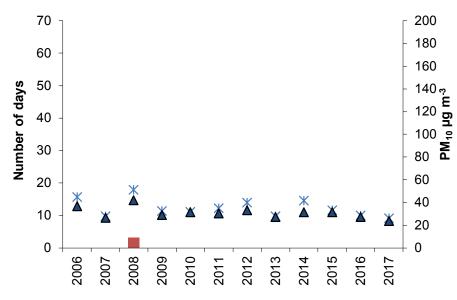



Figure 3.4: Comparison of daily PM_{10} concentrations each month during 2017 to air quality indicator categories at the MRR site.

■Number greater than 50 µg m-3 *Maximum concentration ▲ Second highest concentration

Figure 3.5: Number of days when the NES was exceeded, the maximum concentration and the second highest concentration from 2006 to 2017 at the MRR site.

The estimated annual average PM₁₀ concentration for the MRR site for 2017 is 10.7 μ g m⁻³, compared with around 13 μ g/m³ for 2013-2015. Figure 3.6 shows a downward trend in annual average PM₁₀ concentrations at MRR since 2000. However, trends between 2000 and 2008 dominate this with data suggesting negligible changes in annual average PM₁₀ since 2009. The Ministry for the Environments annual average PM₁₀ guideline is 20 μ g m⁻³. There is currently no NES for annual average PM₁₀ concentrations.

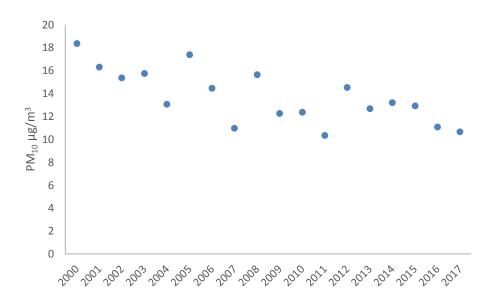


Figure 3.6: Annual average PM_{10} concentration from 2000 to 2017 at the MRR site.

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017
"Good" 0-33% of guideline	39 %	55%	59 %	58%	80%	55%	61%	85%	69 %	77%	81%	84%	78 %	76%	73%	82%	82%	84%
"Acceptable" 33-66% of guideline	56%	34%	36%	33%	17%	37%	35%	15%	21%	23%	19 %	15%	20%	21%	26%	17%	18%	16%
"Alert" 66-100% of guideline	4%	11%	5%	7%	3%	9 %	4%	0%	8%	0%	0%	1%	2%	0%	1%	1%	0%	0%
"Action" >Guideline	2%	0%	0%	1%	0%	0%	0%	0%	1%	0%	0%	0%	0%	1%	0%	0%	0%	0%
Percentage of valid data	15%	20%	22%	22%	16%	25%	33%	32%	31%	32%	29 %	32%	26%	32%	30%	28%	27%	27%
Annual average (µg m ⁻³)	18	16	15	16	13	17	14	11	16	12	12	10	15	13	13	13	11	11
Measured PM_{10} concentrations above 50 µg m ⁻³	1	-	-	1	-	-			1						0	0	0	0
Extrapolated PM ₁₀ concentrations above 50 µg m ⁻³									3						0	0	0	0
99.7 %ile concentration (µg m ⁻³)	53	46	40	67	46	47	42	27	48	31	32	34	38	28	38	33	28	26
Annual maximum (µg m ⁻³)	56	48	41	75	49	49	45	28	51	32	32	35	40	28	42	33	29	26
Number of records	54	74	81	81	60	93	121	116	113	118	106	116	97	115	111	101	98	98

Table 3.1: Summary of PM₁₀ concentrations measured at the MRR monitoring site from 2000 to 2017.

3.2. Particulate concentrations at Redwoodtown – Bowling Club

3.2.1. PM₁₀

During 2017 there were 11 exceedences of 50 μ g/m³ at the Redwoodtown air quality monitoring site (Figure 3.7). The NES allows one exceedence of 50 μ g m⁻³ per year before a breach occurs. Thus the NES was breached on 10 occasions at Redwoodtown during 2017. This is the greatest number of breaches of the NES for Blenheim since the standard became effective in 2005. Prior to this, the maximum exceedences for a year was seven (2012).

Despite the greater number of exceedences the maximum PM_{10} concentration for 2017 was not higher than all previous years at 74 µg/m³ (20 June). The second highest PM_{10} concentration was 66 µg/m³ and was measured on 16 June. Previous recent maximum concentrations at Redwoodtown have ranged from 59 - 82 µg m⁻³.

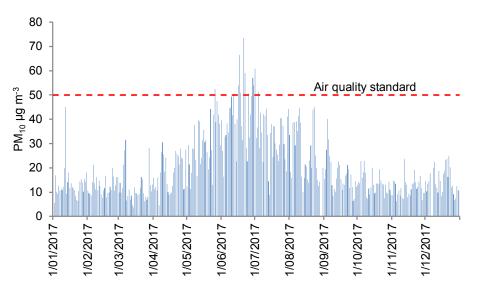


Figure 3.7: 24-hour average PM_{10} concentrations measured at the Redwoodtown – Bowling Club site during 2017.

Daily PM_{10} concentrations measured from 2006 to 2017 relative to the MfE air quality indicator categories (shown in Table 1.3) are illustrated in Figure 3.8. Similarly, monthly variations in the distribution of PM_{10} concentrations for 2017 are shown in Figure 3.9. The distribution of PM_{10} concentrations by season are similar to other years with the winter months showing the greatest proportion of days in the "acceptable", "alert" and "action" categories and fewer days in the "good" category. However, the distribution of the June data, with 73% of the days with PM_{10} concentrations above 33 µg/m³ is higher than typical.

Figure 3.10 compares the number of days when the NES was exceeded in 2017 to previous years along with the maximum concentration and the second highest concentration. It is important to note, that comparisons between years does not take into account year to year variations in the impact of meteorology. This issue is examined further in section 4 of this report.

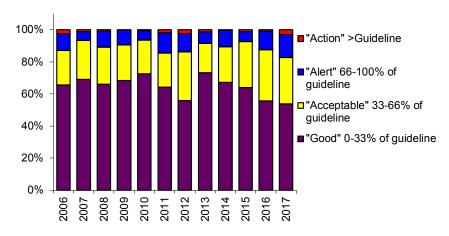


Figure 3.8: Comparison of PM_{10} concentrations measured at Redwoodtown – Bowling Club site during 2006 to 2017 to air quality indicator categories.

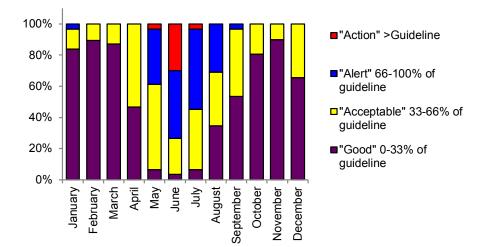


Figure 3.9: Comparison of daily PM_{10} concentrations each month during 2017 to air quality indicator categories.

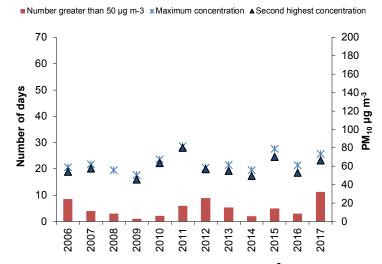


Figure 3.10: Number of days when 50 μ g m⁻³ was exceeded, the maximum concentration and the second highest concentration from 2006 to 2017.

The annual average PM_{10} concentration for 2016 was 20 µg m⁻³. This is slightly above the normal range for this monitoring site (14-19 µg/m³). The Ministry for the Environment specifies an annual average guideline for PM_{10} of 20 µg m⁻³. The NES does not currently include an annual average concentration for PM_{10} .

Summary statistics for PM_{10} monitoring results from the Redwoodtown Bowling Club site from 2002 to 2017 are provided in Table 3.2. Data from 2016 has been adjusted for gravimetric equivalency. From 2005 monitoring was conducted from January to December and in 2004 air quality monitoring took place at a site in Brooklyn Street.

	2002	2003	2004	2005	2006*	2007*	2008*	2009*	2010*	2011*	2012*	2013*	2014*	2015*	2016**	2017**
Monitoring method	Hi-vol	Hi-vol	Hi-vol	Hi-vol	BAM	BAM	BAM	BAM	BAM	BAM	BAM/Hi- vol	BAM	BAM/Hi- vol	BAM/Hi- vol	BAM	BAM
"Good" 0-33% of guideline	18%	22%	46%	63%	66%	69 %	66%	68%	72%	64%	56%	72 %	67%	64%	56%	54%
"Acceptable" 33-66% of guideline	62%	30%	22%	17%	21%	24%	23%	22%	21%	21%	31%	18%	22%	29 %	32%	29%
"Alert" 66-100% of guideline	10%	26%	20%	17%	10%	6%	10%	9 %	6%	13%	11%	7%	10%	6%	12%	14%
"Action" >Guideline	10%	22%	12%	3%	3%	1%	1%	0%	1%	2%	2%	1%	0%	1%	1%	3%
Percentage of valid data	14%	7%	22%	32%	68 %	99 %	99 %	98 %	96 %	87%	91 %	98 %	70%	91 %	95%	99%
Annual average (µg m ⁻³)	-	-	22	18	17	15	17	15	14	16	19	14	16	17	18	20
Measured PM_{10} concentrations above 50 µg m ⁻³	5	6	10	3	6	5	3	1	2	6	8	5	1	4	3	11
Extrapolated PM ₁₀ concentrations above 50 µg m ⁻³	16	34	31	9	10	4	3	1	2	6	9	5	2	5	3	11
Second highest PM ₁₀ concentration (µg m ⁻³)					54	58	56	46	64	80	57	55	51	70	53	66
Annual maximum (µg m ⁻³)	58	60	81	58	59	62	56	46	67	82	59	61	56	79	61	74
Number of records	50	27	82	115	247	360	363	357	352	319	331	351	254	331	346	361

Table 3.2: Summary of PM₁₀ concentrations measured at Redwoodtown – Bowling Club site from 2002-2016.

*not adjusted for gravimetric equivalency

**adjusted for gravimetric equivalency

3.2.2. PM_{2.5}

While there is currently no NES for $PM_{2.5}$ it is generally accepted as the main air quality indicator for particulate in terms of health impacts. Most significant in terms of impacts on health is the annual average. The current WHO annual average $PM_{2.5}$ guideline is 10 µg/m³. However, a 2013 review of WHO guidelines noted that recent long-term studies show associations between $PM_{2.5}$ and mortality levels at concentrations well below the current annual WHO air quality guideline level for $PM_{2.5}$ (10 µg/m³) and recommended a review of that value. During 2017 an annual average $PM_{2.5}$ concentration of 14 µg/m³ was measured at Redwoodtown.

Shorter term exposures are also of concern from a health viewpoint. During 2017 there were 72 exceedences of the 24-hour average reporting guideline for $PM_{2.5}$ of $25\mu g/m^3$ at the Redwoodtown air quality monitoring site (Figure 3.11).

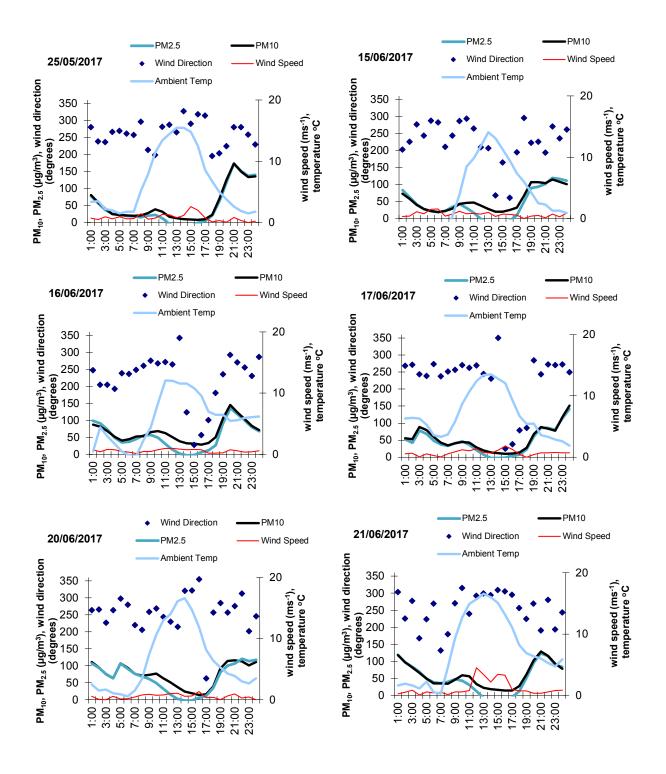

Air quality monitoring of $PM_{2.5}$ during 2017 suggests $PM_{2.5}$ concentrations may be a bigger concern for the town than the previous indicator, PM_{10} .

Figure 3.11: 24-hour average PM_{2.5} concentrations measured at the Redwoodtown – Bowling Club site during 2017.

3.3. Particulate concentrations and meteorology in Blenheim

Daily variations in PM_{10} and $PM_{2.5}$ concentrations and meteorological conditions on days during 2017 when the 24-hour average PM_{10} concentrations exceeded 50 µg m⁻³ at the Redwoodtown air quality monitoring site are shown in Figure 3.12. Data are consistent with historical high pollution days with peak PM_{10} concentrations occurring during the evening and a typically smaller peak occurring mid morning. The concentrations of PM_{10} and $PM_{2.5}$ are very similar during the evening, overnight and morning periods but differ during the daytime when PM_{10} concentrations are typically much higher than $PM_{2.5}$. The key meteorological conditions associated with the elevated concentrations are low wind speeds and southwesterly wind direction.

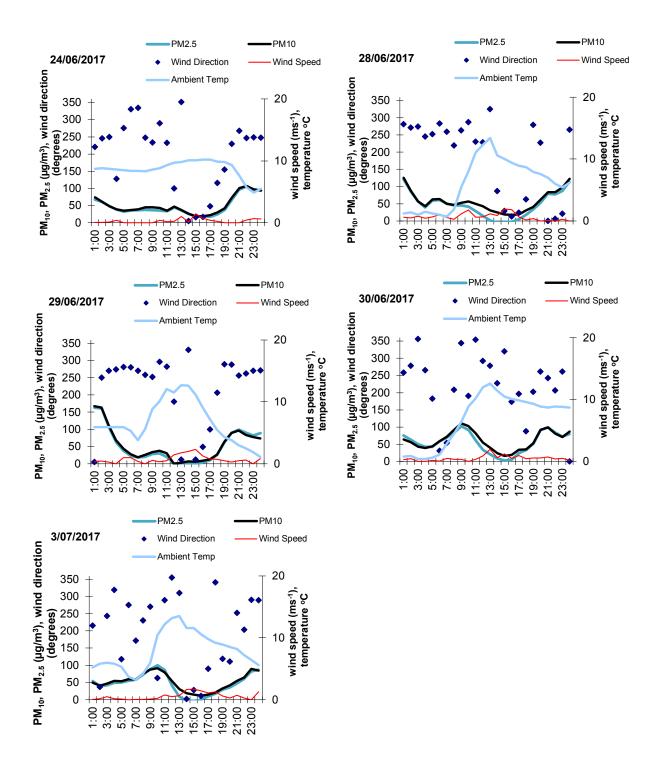


Figure 3.12: Hourly average PM_{10} , $PM_{2.5}$, wind direction and temperature on days when PM_{10} concentrations exceeded 50 µg m³ (24 hour average) at Redwoodtown.

4. Trends in PM₁₀ concentrations in Blenheim

To quantify the impact of meteorological conditions and therefore further assess the likelihood of changes in PM_{10} concentrations since 2005, a trends assessment was updated in 2012 (Wilton, 2012). The objective of that work was to identify meteorological conditions giving rise to concentrations of PM_{10} in excess of the NES and to provide a tool for comparing year to year PM_{10} concentrations whilst minimising the impact of variability in meteorological conditions. The trends assessment provided a tool for updating the trends analysis with time. Figure 4.1 shows trends in PM_{10} concentrations updated with the 2017 PM_{10} data adjusted for the impact of meteorological conditions.

Results for 2017 indicate an increase in average concentrations, the 75th percentile concentrations being similar to the worst-case years (2006,2012,2013) and 90th percentile concentrations similar to the post 2009 data. The data is not indicative of an overall improvement or degradation in PM_{10} concentrations in Blenheim. No trend is evident.

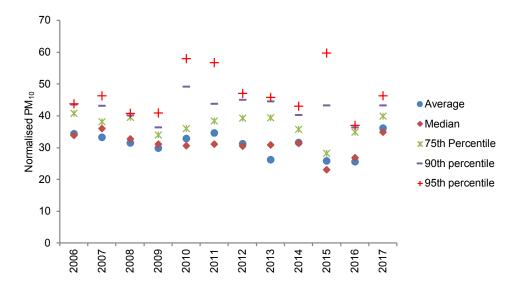


Figure 4.1: Trends in PM₁₀ concentrations after adjusting for meteorological conditions.

5. Summary

In 2017 there was a record number of breaches of the NES for PM_{10} at Redwoodtown with 11 recorded exceedences of 50 µg/m³ and 10 breaches of the NES for PM_{10} . The highest concentration was measured on 20 June and reached 74 µg/m³ (24-hour average). This is higher than for most years but slightly lower than the 2015 maximum concentration of 79 µg/m³. The annual average concentrations for Redwoodtown for 2017 was 19 µg/m³ and is the higher annual average concentration measured at the site since continuous monitoring commenced in 2005.

Concentrations of PM_{10} were also measured at the historical Middle Renwick Road monitoring site. There have been no exceedences of 50 µg/m³ for PM_{10} at this site since 2008. The maximum daily PM_{10} concentration for 2017 was 26 µg/m³. An evaluation of annual average concentrations measured at this site since 2000 has previously indicated a downward trend in concentrations. The trend appears to have tapered since 2009. Concentrations at this site are less than half those measured at Redwoodtown on average.

The NES for PM_{10} was reviewed by the Ministry for the Environment in 2011. A new date of September 2016 was given for compliance with 50 µg m⁻³ (24-hour average, one allowable exceedence) for areas with fewer than 10 breaches. Blenheim was required to meet this target date which effectively meant Blenheim was unable to breach the NES for PM_{10} from winter 2017.

Management measures to reduce PM_{10} concentrations to meet the NES have been included in the in the Proposed Marlborough Environment Plan (notified June 2016). Measures are based on a 2012 assessment which predicted concentrations would reduce from 2012 – 2017 in the absence of regulation. Potential reasons for the reductions not occurring include higher than anticipated emissions from newer burners and underestimated population increase in the airshed area from 2006-2013. Given the absence of a downward trend from 2012-2017 it would seem unlikely that the management options specified in the notified air plan would be effective in reducing PM_{10} concentrations to meet the NES.

6. References

Ministry for Environment. (2002). Ambient Air Quality Guidelines – 2002. Ministry for Environment.

Ministry for Environment. (2004). Resource Management (National Environmental Standards for Air Quality) Regulations 2004. New Zealand Government. Retrieved from http://www.legislation.govt.nz/regulation/public/2004/0309/latest/DLM286835.html?search=ts_regulation_ air+quality_resel&p=1&sr=1

Ministry for the Environment. (2009). Good practice guide for air quality monitoring and data management 2009. Wellington, N.Z.: Ministry for the Environment. Retrieved from http://www.mfe.govt.nz/publications/air/good-practice-guide-air-quality-2009/good-practice-guide-for-air-quality.pdf

Wilton, E. (2008). Annual air quality monitoring report 2007. Marlborough District Council Report.

Wilton, E. (2012). Assessing trends in PM10 concentrations in Blenheim - 2011. Marlborough District Council Report.

Wilton, E. (2017). Air Emission Inventory - Blenheim 2017. Marlborough District Council Report.

Wilton, E., & Baynes, M. (2009). Annual air quality monitoring report for Blenheim and Picton - 2008. Marlborough District Council Report.