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1 Introduction 

Marlborough District Council is developing a strategy for the urban growth and development of 

Blenheim.  The Council has identified a number of potential urban growth areas that lie on the 

periphery of the city.  Opus International Consultants Ltd (Opus) has been commissioned by the 

Council to carry out a geotechnical evaluation of the proposed growth areas.   

Geotechnical investigations and assessment of proposed growth areas to the north, east and 

southeast of the city were previously carried out in early 2012 (Opus, 2011; 2012a).  The 

investigations showed the areas to the east and southeast are underlain by significant thicknesses 

(> 15 m) of loose materials which are susceptible to liquefaction.  Consequently, these areas would 

be prone to damage in earthquakes or alternatively require considerable cost and resources to 

develop with appropriate mitigation measures. 

The geotechnical appraisal of the ground conditions and suitability of the land for development 

recommended that land which is more stable to earthquake hazards be developed (Opus, 2012b).  

The Council therefore identified 6 new areas to the northwest, west and southwest of the city for 

possible urban growth, and engaged Opus to carry out investigations in the new areas to assess the 

geotechnical issues there, particularly relating to the hazard posed by liquefaction.  The site 

investigations were carried out during September to December 2012 (Opus, 2013).   

This report presents a characterisation of the ground conditions and geotechnical hazards in the 

proposed new urban growth areas, and makes recommendations for land use planning taking into 

account the earthquake hazards. 

2 Site Description 

The proposed urban growth areas are located on the outskirts of Blenheim’s urban area, to the 

north (area Na:Nb), northwest (areas 1, 3 to 6) and southwest (area 8).  The locations of the growth 

areas are shown on Figure 1.  The sites are situated on predominantly flat to gently undulating 

alluvial plains, and the land is predominantly under agricultural use with some rural-residential 

developments.  Several streams and drains cross the sites, flowing from west to east. 

The NZMS 260 map grid reference of the area under investigation is BR28 775 050. 

3 Geological Setting 

3.1 Geology 

The geology of the Marlborough Area has been mapped at 1:25,000 scale by the New Zealand 

Geological Survey (NZGS, 1981) and at 1:250,000 scale by the Institute of Geological and Nuclear 

Sciences (IGNS, 2000).   

The mapping shows the Blenheim area to be underlain by Holocene age marine/estuarine silts and 

sands of the Dillons Point Formation and alluvial gravels and sands of the Rapaura Formation (see 

Figure 2).  Southern Fan Deposits were deposited by the Taylor River to the southwest of 

Blenheim, contemporaneous with deposition of Rapaura Formation gravels in the Wairau Valley.  
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These strata are underlain by older, clay-bound alluvial gravels of the Speargrass Formation 

(NZGS, 1981; Landcare Research, 1995; MCRWB, 1987; Davidson and Wilson, 2011). 

3.2 Active Faults 

The plate boundary between the Pacific and Australian plates passes through Marlborough, and 

consequently this region is an area of high seismicity. Relative plate motion between the tectonic 

plates is accommodated across a zone of active strike slip faults (the Marlborough Fault System), 

which links the Alpine fault transform plate boundary to the south with the westward-directed 

Hikurangi subduction margin to the north. The Marlborough Fault System comprises four 

principal strike-slip faults and a number of smaller faults. Together, these faults represent 

earthquake sources that contribute significantly to the seismic hazard in the Marlborough district.   

The principal active faults within 15 km of the site are summarised in Table 1 and discussed below. 

Table 1 Active fault summary table 

Fault 
Characteristic 

Event Magnitude 
Recurrence 

Interval (years) 
Distance from 
site (km) 

Direction 

Wairau Fault 7.1 – 7.6 1,150 – 1,400 0.4 Northwest 

Vernon Fault ? 3,000 – 4,000 8 Southeast 

Awatere Fault 7.5 820 – 950 14 Southeast 

Source: Benson et al. (2001); Clark et al. (2011); Geotech Consulting Ltd (2003a, 2003b, 2005); Mason et 
al. (2006a, 2006b); Zachariasen et al. (2006). 

The Wairau Fault is the closest principal active fault to the site, lying approximately 400 m 

northwest of Area 1.  The fault is capable of rupturing in earthquakes of characteristic magnitude 

7.1 to 7.6, and horizontal surface displacements of 5 to 7 m with an average return period of 1150 to 

1400 years (Geotech Consulting, 2003a, 2003b, 2005; Zachariasen et al., 2006). 

Two secondary faults (the Tempello and Fairhall faults) have been inferred from stratigraphic 

cross-cutting relationships between boreholes in south western Blenheim (Davidson and Wilson, 

2011).  The activity of these faults is not well defined, as they do not form obvious traces on the 

ground surface.  The Fairhall Fault is indicated to lie within approximately 100 m of the 

northwestern corner of Area 8 (see Figure 2).  This fault appears to displace the base of the 

Winterholme Formation, which suggests possible activity in the last 75,000 to 130,000 years.  The 

Tempello Fault lies approximately 1.5 km to the south of Area 8.  This fault appears to displace the 

base of Speargrass Formation strata, which suggests possible activity in the last 13,000 years.   

As the Tempello and Fairhall faults do not have well defined traces it is likely that they have not 

ruptured in the last ~9000 years and 75,000 years, respectively (i.e. since the formation of the 

Dillon’s Point and Winterholme formations).  These faults are not recorded on GNS’ Active Faults 

Database and given the long duration since the most recent activity the hazard posed by these 

features is likely to be very low to low.  However, no detailed studies of the location, rates and 

magnitude of displacement of these faults have been carried out, and therefore the hazard posed by 

these faults cannot be quantified without further investigation.   
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4 Ground Conditions 

4.1 Site Investigations 

Geotechnical site investigations have been carried out across the study area to provide information 

to better characterise the ground conditions and assess the geotechnical issues, particularly relating 

to the hazard posed by liquefaction.  The investigations were scoped and carried out in accordance 

with the guidelines provided by the former Department of Building and Housing (now the Ministry 

of Business, Innovation and Employment) for geotechnical investigations of land in Canterbury 

(MBIE, 2012). 

The investigations were carried out between October and December 2012, and comprised the 

following:  

• Twenty seven boreholes, to depths of 10 m to 20 m, with in situ Standard Penetration Tests 

carried out at 1 m depth intervals. 

• Twenty five static Piezo-Cone Penetration Tests (CPTu), to depths of between  1 m and 7.44 m, 

with further penetration retarded by dense gravels. 

• Laboratory testing of samples recovered from the boreholes. 

The results of the investigations are provided in the site investigation report (Opus, 2013). 

4.2 Ground Conditions 

The area under investigation is located on flat to gently undulating terrace surfaces, which are 

underlain by young (Holocene and late Pleistocene age) interbedded alluvial and swamp deposits.  

Information on the ground conditions in the Blenheim area is provided by the 2013 site 

investigations (Opus, 2013) and factual information available from previous investigations in the 

wider Blenheim area (Geotech Consulting, 2004; Nelson Consulting Engineers, 2007; CH2M Beca, 

2008; Opus, 2012a; MDC borehole database). 

These investigations show the surficial soil layers in the local area to consist of interbedded gravels, 

sands and silts of the Rapaura and shallow Speargrass formations, which interfinger with estuarine 

silts and sands of the Dillons Point Formation to the east of the study area.   

The Rapaura Formation deposits consist of loose sands and soft clayey silts underlain by dense to 

very dense alluvial gravels, with a sandy matrix and some interbedded sand layers.   

Speargrass Formation deposits have been mapped to the southwest of Blenheim, and were 

encountered in the exploratory holes at Area 8.  These strata consist of loose sands and soft silty 

clays overlying dense to very dense clayey gravels and hard silts and clays. 

A summary of the soils encountered is provided below in Table 2. 
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Table 2 Generalised soil profiles at the growth areas 

Areas Depth Range Lithology 

Na:Nb 

0 – 2 m (< 4 m) Very loose to medium dense sand, silty sand and silt, and firm to 
hard sandy clay 

2 – 5 m Medium dense to very dense silty sand and sandy gravel 

5 m + Medium dense to very dense sandy gravel and gravelly sand with 
occasional silt and sand layers 

1 – 4 

0 – 2 m (< 4 m) Soft to hard silt, clayey silt, and sandy silt  

2 – 4 m (< 6 m) Loose to very dense silty sand and sandy gravel 

4 m + Dense to very dense sandy gravel and gravelly sand 

5, 6 & 8 

0 – 2 m (< 10 m) Very soft to hard silt, clayey silt and silty clay  

2 – 8 m Medium dense to very dense sandy silt, silty sand and sandy 
gravel 

8 m + Dense to very dense sandy gravel, clayey gravel and gravelly sand 

 

4.3 Groundwater Conditions 

The groundwater levels recorded during the site investigations ranged from 1 m to 3 m depth below 

ground level in Areas 1 to 6 and Na:Nb, and 2 m to 7.1 m depth in Area 8.  This is consistent with 

longer term static groundwater levels recorded in the wider Blenheim area, which show that the 

groundwater table lies approximately 2 m to 5 m below ground level in the development areas 

(Davidson and Wilson, 2011). 
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5 Geotechnical Hazards 

5.1 Soft Ground Conditions 

Compressible soft clays and silts can consolidate over time if subjected to loads such as that from a 

building.  Consolidation of founding soils can lead to settlement of the building and consequently 

damage to the structure.  Investigations showed the upper 2 to 4 m of soil in all areas contained 

clay or silt.  In particular, Areas 6 and 8 have significant thicknesses (< 10 m) of potentially 

compressible soils which could pose a hazard to future development, as special measures may be 

required such as preloading of the site or deep foundations.   

5.2 Slope Instability 

The slope failure hazard at the site is very low due to the flat, low-lying topography of the land.  

Areas in close proximity to river banks will be susceptible to slumping or erosion in flood events or 

lateral spreading of the banks as a possible consequence of earthquake-induced liquefaction.  The 

issues related to liquefaction hazard at the site are described in Section 5.5. 

5.3 Fault Rupture 

The closest active fault to the study areas is the Wairau Fault.  This fault has a distinct trace over 

much of its length, except for the lower Wairau Valley where the trace is intermittent and subdued.  

The fault is inferred from available geological evidence to lie approximately 300 m to 400 m from 

Area 1 at its closest point (Geotech Consulting, 2003a; IGNS, 2000).  Rupture of this fault is 

expected to result in 3.4 m to 7 m of lateral displacement of the ground surface at the fault trace 

(Geotech Consulting Ltd, 2003b, 2005; Zachariasen et al., 2006).   

The proximity of the fault to Area 1 and the uncertainty of the fault’s position suggests fault rupture 

could pose a hazard to this development area.  The land use planning issues from permanent 

ground damage associated with fault rupture are discussed in Section 6.4. 

5.4 Ground Shaking 

Blenheim's principal earthquake hazard derives from the close proximity of the active Wairau Fault 

and Awatere Fault.  Geotech Consulting (2003a, 2003b) conclude there is a moderate to high 

likelihood of a surface rupturing earthquake on the Wairau Fault in the next 50 - 100 years.  Taken 

together, the Wairau and Awatere Faults have a combined recurrence interval of between 350 and 

950 years (Robertson and Smith, 2004).  Other principal active faults in the region include the 

Clarence, Kekerengu, Elliot, Jordon and Hope faults.  All of these faults are capable of producing 

large magnitude (>M7) earthquakes (Stirling et al., 2002), and Robertson and Smith (2004) state 

that collectively an earthquake on any one of these faults has an average recurrence interval of less 

than 50 years.  Ground shaking is therefore a significant hazard to the Blenheim area. 

5.5 Liquefaction 

5.5.1 Definition 

Liquefaction will occur when saturated loose to medium dense fine grained granular materials and 

silt are subjected to ground shaking.  Liquefaction can cause sand boils, subsidence, lateral 
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spreading and flow slides.  Damage from such deformation can include floatation of buried 

structures, fissuring of the ground, subsidence of large areas, differential subsidence, and 

foundation failure caused by loss of support as the liquefied soil substantially loses its shear 

strength. 

5.5.2 Analysis 

The liquefaction potential of soils was determined using LiquefyPro, version 5.8h (CivilTech 

Software, 2010).  This software uses cyclic liquefaction evaluation methods to determine whether 

liquefaction is likely in a particular earthquake event and estimate the resulting ground subsidence.  

The modified Robertson method (Robertson and Wride, 1997) and modified Stark and Olsen 

methods (Stark and Olsen, 1995) were used to assess liquefaction with CPT and SPT results 

respectively.  The method proposed by Ishihara and Yoshimine (1992) was used to estimate the 

resulting ground subsidence. 

The design horizontal peak ground acceleration (PGA) has been derived in accordance with the 

New Zealand Earthquake Loading Standard, NZS 1170.5: 2004 (Standards New Zealand, 2004).  

The derivation of the design horizontal PGA is shown as follows. 

Design PGA,   

gDTNZRTCgC uh ),()0(
0

==
 

Where :   

Co    = design ground acceleration coefficient 

   g    = acceleration due to gravity 

   Ch (T=0) = spectral shape factor for Site Class D at period T = 0  

     = 1.12 

   Z    = hazard factor  

     =  0.33 

   Ru    = return period factor 

     = 1.0 (for a 500 year return period event) 

     = 1.3 (for a 1000 year return period event) 

     = 1.8 (for a 2500 year return period event) 

   N (T, D) = near-fault factor 

     = 1.0   

 Therefore,  

   Design horizontal PGA for a 500-year return period event = 0.37g 

   Design horizontal PGA for a 1000-year return period event = 0.48g 

   Design horizontal PGA for a 2500-year return period event = 0.67g 

The characteristic magnitude used in the liquefaction assessment was assumed to be MW = 7.5 for 

all return period events considered, which reflects the magnitude weighting for the calculation of 

the PGAs and is consistent with the characteristic magnitude of earthquake sources in the region. 
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5.5.3 Results 

The approximate thicknesses of soil layers assessed to liquefy at each area are shown in the cross 

sections provided in Appendix A.  Typically there was only a slight difference in the thicknesses of 

layers assessed to liquefy in 1/500, 1/1000 and 1/2500 year return period events.  This is because 

most soil layers susceptible to liquefaction have a low density such that they are likely to liquefy in 

earthquakes with a PGA less than that from a 1/500 year return period level. 

The liquefaction analyses showed the shallow silt and sand layers above the gravels as liquefiable 

for all return period events considered.  Site investigations show this layer to be typically 2 m to 4 

m thick, and the groundwater to be between 1.3 m to 2.1 m depth.  The underlying Rapaura 

Formation gravels and sands are typically dense to very dense, and do not exhibit liquefaction 

potential apart from occasional thin layers of loose sand.   

The potential for liquefaction induced ground damage will be strongly influenced by the 

groundwater table depth.  As described above in Section 4.3, the regional groundwater table in the 

Blenheim area lies approximately 2 m below ground level.  If the groundwater table is lower, the 

thickness of liquefiable material beneath the water table is reduced and the potential ground 

damage effects will be smaller. 

5.5.4 Liquefaction Induced Ground Damage 

Liquefaction induced ground damage causes most damage to the built environment including 

lifelines, and needs to be considered in the assessment of liquefaction hazards (Brabhaharan, 1994 

and 2010).  Therefore the potential for ground damage from liquefaction has been considered for 

the urban growth areas under consideration. 

Ground Subsidence 

Subsidence is the vertical downward displacement of the ground, which happens without any 

vertical load being applied to the ground.  Liquefaction leads to subsidence as a result of the 

liquefied soil settling to a slightly denser state and ejection of sand with water to the surface. 

Widespread ground subsidence can cause areas to become more prone to flooding.  Localised 

differential subsidence can lead to cracking and damage to structures, and affect the functionality 

of services, particularly gravity sewers and storm water systems. 

The magnitude of expected liquefaction induced ground subsidence in each area, excluding the 

areas that are prone to lateral spreading, is tabulated in Table 3. 

Table 3 Estimated ground subsidence due to liquefaction 

Return 
period 
event 

Estimated subsidence (mm) by area 

Na:Nb 1 3 4 5 6 8 

1 / 500 0 – 50 0 – 65 0 – 65 0 – 50 0 – 25 0 – 25 0 – 25 

1 / 1,000 0 – 50 0 – 65 0 – 65 0 – 55 0 – 25 0 – 45 0 – 25 

1 / 2,500 0 – 50 0 – 65 0 – 65 0 – 60 0 – 25 0 – 65 0 – 25 
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Lateral Spreading 

Lateral spreading occurs predominantly in the vicinity of free surfaces such as water courses where 

the liquefied soil can laterally displace towards the water course, but can also occur when there is 

slope along which the liquefied ground can displace.  This can lead to large displacements of the 

ground from hundreds of millimetres to a few metres.   

Lateral spreading can extend to 200 m or more from water courses but is typically more severe 

nearer the river.  In some situations it has extended 300 m to 500 m due to block sliding.  This may 

be mainly in areas where the land can spread in more than one direction due to bends or loops in 

the water course.  Experience from the 2010 Darfield and 2011 Christchurch earthquakes shows the 

ground damage due to lateral spreading reduces at a distance greater than 130 m from a river or 

stream.  Figure 3 shows the study areas and the proximity to nearby rivers and streams.  The extent 

of lateral spreading is a function of both the depth of the stream or channel and the depth of the 

liquefiable soils. 

The estimates of ground subsidence given in Table 3 do not take into account the subsidence effects 

of lateral spreading. 

Area Na:Nb 

Liquefaction in this area may lead to lateral spreading of the land towards nearby streams and 

drains although the effects are likely to be limited given the relatively thin deposits of liquefiable 

material.  The effects of lateral spreading are likely to be most significant at the eastern end of this 

area, where the land is underlain by thicker deposits of liquefiable material and where 

watercourses run in close proximity to the northeastern and southern boundaries (Opawa River 

and Caseys Creek, respectively). 

Areas 1 to 5 

Liquefaction in these areas is not considered likely to cause significant lateral spreading given the 

thin deposits of liquefiable material and the flat terrain with only minor watercourses (shallow 

farm drains). 

Area 6 

Lateral spreading is likely to be a significant issue in Area 6, particularly along the southern 

boundary where up to 7.5 m of soft silt and clay soils are present adjacent to Old Fairhall Stream.  

Other watercourses such as Murphys Creek and Camerons Creek cross this area and may also 

present a lateral spreading risk, however these watercourses are shallower with only thin 

liquefiable deposits and so the potential ground damage is likely to be less significant. 

Area 8 

Lateral spreading is not considered to be a significant issue in Area 8, because of the flat ground 

with no significant watercourses in the vicinity.  
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6 Land Use Planning for Geotechnical and 

Earthquake Hazards 

6.1 Strategic Planning Timeframe 

The timeframe used for planning and design depends on two factors: 

(1) The importance level of the development  

(2) The life of the development. 

A life of 50 years is traditionally assumed for normal buildings, and 100 years for infrastructure.  

For normal buildings of Importance Level 2 (NZS 1170.0), a 500 year return period earthquake 

hazard is used for ultimate state design, which gives about 10% probability of the event occurring 

over the 50 year life assumed for typical buildings.  For higher value infrastructure, a life of 100 

years is often assumed, with a 1,000 or 2,500 year return period earthquake is used for ultimate 

state design, depending on its importance, giving probabilities of 10% and 4% respectively, see 

Table 4. 

Table 4 Probability of event for planning and design 

Return 
period event 

Probability of event in life 

Building life 50 
years 

Infrastructure 
Life 100 years 

Urban Growth 
Life 200 years 

Urban Growth 
Life 500 years 

1 / 500 10% - - - 

1 / 1,000 - 10% - - 

1 / 2,500 - 4% - - 

1 / 2,000 - - 10% - 

1 / 5,000 - - 4% 10% 

 

Areas of urban expansion will have a mix of normal buildings and higher value and importance 

level infrastructure. Although individual buildings or infrastructure may be renewed from time to 

time, the areas once developed will remain in use for a long time.   An area developed could 

potentially be in use in perpetuity, unless and until there is some major environmental or social 

change that leads to abandonment of the area.  Therefore, a longer “life” is appropriate for zoning 

areas for urban growth, a “life” of at least 200 years or 500 years or more may be appropriate. 

For considering urban growth, retaining a similar probability of 10%, consideration of events with a 

return period of 5,000 years may be appropriate for land use planning for hazard events which can 

have a destructive effect on the built environment.  This would limit the probability of such 

destructive events over a 500 year “life” to 10%. 

Such an approach may be appropriate for example when zoning for buildings in an active fault 

zone.  This may also be prudent for land prone to very high landslide hazards or extensive lateral 

spreading from liquefaction. This is on the basis that these hazards can have a destructive effect on 

the built environment exposed to the hazard. 
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For the areas investigated for urban growth in Blenheim, the ground shaking associated with 

earthquakes with a return period of less than 500 years is assessed to be sufficient to cause 

extensive liquefaction (and lateral spreading in vulnerable areas) of the liquefaction susceptible 

loose soils present.  There is only limited additional liquefaction in larger earthquake events with a 

longer return period.  Therefore, in this instance, the length of the strategic planning period for the 

liquefaction hazards is not significant. 

6.2 Poor Foundation Conditions 

The thickness of soft and compressible silt and clay deposits present are generally less than 2 m 

deep, and locally up to 4 m deep.  The geotechnical hazards due to poor ground conditions leading 

to poor foundation conditions and consolidation settlement (referred to in Section 5.1) can be 

addressed during construction by simple traditional foundation measures.  Such measures may 

include preloading, undercut and replacement or the use of short piles founded below these soft 

layers. 

6.3 Slope Failure 

Slope failure is not a significant hazard and does not need special measures other than avoiding 

building on land very close to the banks of water courses. 

6.4 Fault Rupture 

As described above, the Wairau Fault has been inferred from available geological evidence to lie 

approximately 300 m to 400 m from Area 1 at its closest point (Geotech Consulting, 2003a; IGNS, 

2000), although the fault trace is intermittent and subdued .  Experience of the Greendale Fault 

rupture during the Darfield Earthquake shows ground damage can be sustained from fault rupture 

that does not form an obvious fault trace (Villamor et al., 2012), which has important implications 

for land use planning and resilient infrastructure design.   

Ground damage resulting from the rupture of the Greendale Fault comprised discrete shears and 

localised bulges, but predominantly horizontal dextral flexure.  This deformation occurred over a 

zone up to 300 m wide.   About a dozen buildings, mainly single-storey houses and farm sheds, 

were affected by rupture of the fault, but none collapsed, largely because most of the buildings were 

relatively flexible and resilient timber-framed structures and also because of the distributed nature 

of the deformation.  Houses with only lightly-reinforced concrete slab foundations suffered 

moderate to severe structural and non-structural damage, whereas houses with robust concrete 

slab or shallow pile foundations performed more favourably (Van Dissen et al., 2011).   

Recent work by Geotech Consulting (2003a) maps the location of the fault to ±75 m accuracy 

further up the Wairau Valley, where the fault is located in bedrock terrain and forms an obvious 

and distinct trace.  In the area northeast of Renwick, the fault trace has been buried or obscured by 

the young alluvial deposits, and as a consequence the fault trace location will have been mapped 

with less confidence.  We recommend further geophysical and paleoseismic investigations be 

carried out to better constrain the fault’s location in the area to the northeast of Renwick, and in 

particular in the immediate vicinity of the proposed urban growth areas. 

Despite the uncertainty surrounding the Wairau Fault’s location, the distance of the fault from the 

study areas suggests fault rupture could pose a ground damage hazard to the northwestern part of 

Area 1.  Potential ground damage in Area 1 will be a function of the magnitude of surface rupture 
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displacement and the width of the zone over which this displacement is accommodated.  The 

nature of surface rupture at the northeastern end of the Wairau Fault is likely to be distributed, 

given the subdued nature of the fault trace, and therefore ground damage is likely to be relatively 

minor.   

The Ministry for the Environment published guidelines on planning for development of land on, or 

near, active faults in 2003 (MfE, 2003).  In these guidelines, the surface rupture hazard of an active 

fault is characterised by the location/complexity of surface rupture of the fault, and the activity of 

the fault, as measured by its average recurrence interval of surface rupture.   

The Wairau Fault is a Class I active fault under the MfE guidelines, as it has an average recurrence 

interval of less than 2000 years (Table 1).  Given the proximity of the fault to Area 1, the potential 

for fault rupture in the northwestern part of that area should be considered as part of any land re-

zoning process.  We recommend fault avoidance zones be developed for the Wairau Fault, and 

building control measures be incorporated into the land use policy to ensure any new structures are 

tolerant to potential ground deformation resulting from fault rupture. 

6.5 Ground Shaking 

Buildings are designed to withstand earthquake ground shaking, which is derived for each area of 

New Zealand.  Therefore existing design standards cover the design of structures in these areas of 

Blenheim, and no special measures are considered to be required to be considered as part of land 

use planning. 

6.6 Liquefaction-Induced Ground Damage 

6.6.1 Ground Subsidence 

There is potential for shallow liquefaction in much of the areas under consideration for urban 

growth land use re-zoning.  Our assessment shows that the ground subsidence from the limited 

liquefaction is generally expected to be less than 70 mm.  Differential subsidence across a building 

footprint will be smaller, say less than 40 mm.   

The amounts of ground subsidence given above are not sufficient to warrant wholesale exclusions 

on development.  One approach could be to exclude areas with an identified liquefaction potential 

from being zoned for development, however excluding land on this basis would also exclude much 

of the area in the vicinity of Blenheim. 

An alternate pragmatic approach could be to allow development in these areas (except areas that 

are subject to lateral spreading as discussed below), but put in place planning rules to ensure that 

the development takes into consideration this low consequential subsidence from liquefaction.   

Using the principle of resilience, a suitable approach will be to limit damage and / or build in a 

manner that any damage can be quickly and economically repaired and the building reinstated.  

For example, building foundations may be designed to protect the building from damage due to 

such limited subsidence by using short piles up to 5 m depth, or by use of foundations that are 

tolerant to limited subsidence and can be easily repaired after any event.     

Services should also be designed with the potential for subsidence in mind, such as using flexible 

connections along pipelines that tolerate some ground deformation. 
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6.6.2 Lateral Spreading 

Land susceptible to liquefaction and lateral spreading is prone to significant risks in earthquake 

events.  Therefore, it would be prudent to not zone for intensive development the areas susceptible 

to lateral spreading, such as the northeastern part of Area Na:Nb and the southern part of Area 6.  

These areas subject to liquefaction and lateral spreading can be used for less intensive land uses 

such as parks and gardens or agriculture.  This could be achieved by appropriate zoning of the land 

through district planning measures.  Brabhaharan (2013) suggests approaches at three levels that 

can be considered to avoid lateral spreading hazards depending on the land use and the nature and 

extent of the hazard. 

» Land Use Zoning – extensive hazardous areas can be avoided by zoning the land prone to 

those hazards for less intensive land use such as rural farming or parks. 

» Town planning or Subdivision Planning – District Plan rules can stipulate that smaller 

extents of severe hazards, perhaps localised liquefaction lateral spreading or slope hazard 

from nearby hillside, can be mitigated by making use of these areas within a township or 

sub-division for open areas such as reserves, park lands or car parking with no buildings.  A 

good example is the use of river flood prone areas within the stop banks in the Hutt City for 

car parking and mobile markets. 

» Micro-siting – stipulate and encourage development to avoid areas of high hazard by micro-

siting buildings in safer parts of land parcels, with more hazard prone areas used for open 

space or parking. 

Given the limited nature of some of the areas of lateral spreading from liquefaction in the context 

of the wider area, some of the measures could be to stipulate areas prone to lateral spreading such 

as near the rivers as areas of high hazard where development is excluded, but the areas can be 

designated as reserves or used for less intensive land use. 

The liquefaction hazard is generally low in the remaining areas (the central and western parts of 

Area Na:Nb, Areas 1-5, the northern part of Area 6, and Area 8).  There is the potential for shallow 

liquefaction to occur, but this is not considered significant enough to preclude development of 

these areas.  However, we recommend that measures be put in place through planning policy and 

development controls to ensure foundations for new developments can tolerate deflections 

imposed by liquefaction-induced ground subsidence. 
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Appendix A 
Liquefaction susceptibility cross sections 
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